Big Data Analytics

The Hype and the Hope*

Dr. Ted Ralphs
Industrial and Systems Engineering
Director, COR@L Laboratory

* Source: http://www.economistinsights.com/technology-innovation/analysis/hype-and-hope/methodology
Introduction and Motivation
Goals

● We’ll survey the landscape surrounding “big data” and “big analytics”.
● This is a huge and amorphous agenda.
● Many things will necessarily be left out or described only briefly.
● The goal is to cut through the hype and see what is really happening.
● The perspective we’ll take is a bit “broader” than the usual answer to “what is big data?”

http://www.lehigh.edu/engineering/research/resolve/2013v2/index.html
What are we talking about?

- This talk is about technology for extracting insight from data.
- Academics and practitioners have been doing this for decades (Tukey).
- The problems we’re now struggling to solve are not new.
- What has changed is the scale.
 - Potentially valuable data is being produced by a huge range of new sources
 - sensors and smart devices
 - social media
 - pictures, video
 - More importantly, technologies now exist that allow us to store, move, and process the data.
- When data can no longer be maintained on a single computer at a single location, lots of things become more difficult (techniques are not scalable)
- On the other hand, analysis that really requires big data may now be feasible when it was not before.
What do we mean by “insight”?

Description, prediction, prescription, recognition, recommendation/advice

Data contains (hidden) knowledge

knowledge = value

We are looking for patterns in the data that are

- difficult for a human to see,
- yield unexpected insights,
- can be used to explain observed phenomena, and
- lead to the development of “models” for prediction and informed decision-making.
Summarizing data

- **Descriptive analytics** summarize the data and are fundamental to insight.
- We can describe data by producing summary statistics and visualizations.
- The goal is to get a first glimpse of what information the data contains.
- Example: collegescorecard.ed.gov
 - This huge data set contains a wealth of information about college costs and outcomes.
 - The graph at right is from an article in the New York Times on the gender earnings gap.

Insight from visualizations

source: http://hint.fm

Making predictions

- **Predictive analytics** go a step further and try to extrapolate into the future.

- Simple Example: LendingClub.com Data
 - Huge open data set of peer-to-peer loans.
 - Beautiful interactive visualization of the data on http://www.100mdeep.com
 - Succinctly summarizes a huge amount of data in an intuitive way.
 - Historic trends are used to predict future trends.

- This is a simplistic example of both descriptive and predictive methods.

- We will see more sophisticated ones later.
Making data-driven decisions

- **Prescriptive analytics** use data to help us make optimal decisions.
- **Example: Google Maps driving directions**
 - This is a great example of real-time decision-making using streaming data to both predict and prescribe.
 - Historical traffic data and real-time information on road conditions from users are used to predict travel time.
 - The optimal route is chosen and updated throughout the trip.
 - This is amazing stuff!
- **Prescriptive analytics** is the main strategic focus of Lehigh’s Industrial and Systems Engineering Department.
The scale of Big Data

- Every Minute:
 - 227K Tweets
 - 72 Hours of Video uploaded to YouTube
 - 570 Web sites created
 - 100 million e-mails sent
 - 350 Gb data processed by Facebook
 - 47k apps downloaded from Apple
 - 34k Facebook likes
 - 350 blog posts

- In 2012, 2.5 Exabytes of data generated every day.

1 Exabyte = 1000 Petabytes; 1 Petabyte = 1000 TeraBytes
1 TeraByte = 1000 GigaBytes
1 DVD = 4.7 GigaBytes
Do we always need “big” data?

- Not always! Sometimes yes, sometimes no.
- It depends on complexity of the “model.”
- We want to avoid fitting a complex model with a small amount of data.
- However, we also don’t want to fit a “simple” model with too much data.

source: http://xkcd.com/904/
What is a “model”?

- In almost all big data applications, there is an underlying “model.”
- The “model” is a simplified version of the world that we can describe and analyze more easily than the real world.
- The model is typically not complete---it has parameters and features we assume are unknown.
- Thus, we are selecting one from a set of possible models arising from different possible values of the parameters.
- We choose the fully specified model that fits “best” according to our observed data.
- Some models are very abstract and have little structure initially, while others are concrete.
Example

Recommendation systems (think Netflix)

- We have a collection of users and products.
- We also have ratings of some products by some users.
- How do we predict a missing rating (a product not yet rated by a user)?

Model

- Assume products are described by “features” that determine a user’s rating.
- Use data to elicit what the “features” are and how important each feature is to each user.
- Note that we don’t even need to know what real-world properties of a product the features represent.

- Once we populate the parameters of the model (features and weights), we can predict how existing users will rate new products.
- Next step: Predict how a brand new user will rate a given product (how?)
Example

Clustering/Classification

● We want to divide a group of “objects” into clusters that are similar.

● This could be used, for example, to divide customers into segments.

● Similarity Model
 ○ Objects are described as tuples of “features” that each have a numerical value.
 ○ For consumers, features could be credit score, salary, home location, work location, etc.
 ○ We have a “distance” measure between two objects that we use to assess similarity.
 ○ Groups that are all mutually close to each other are put in one set.

● Connectedness Model (Social Networks)
 ○ Objects are people and/or things that we want to advertise.
 ○ We only have lists of what objects are connected (friends, likes) to what other objects.
 ○ Groups with a lot of interconnections are related/similar.

● We’ll see yet other models later.
Example

Image recognition

- To recognize the components of an image, we have to build a simple model of the physical objects around us.
- Model
 - The physical world consists of “objects” with properties such as color, shape, texture, etc.
 - To recognize the content of an image, we have to separate it into “objects” (edge detection).
 - Each object has to be recognized by its properties as being of some “type.”
- Ideally, we want a set of examples that are already labeled, although it’s possible to do recognition even without any labeled data.
- The Internet is full of labeled photographs...
What Google think is "fish"

Fish or not?
The Analytics Process
The analytics process

- The methods we informally introduced in the first part are all part of “the analytics process.”
- You will find many descriptions of this process from different points of view.
- Almost all of them share some common steps.
Oracle’s process description

These basic steps are distilled from a presentation by Oracle.

1. Standard reporting (What happened?)
2. Descriptive Analytics (How many? Where? When?)
3. Query/Drill Down (What is the problem?)
4. Predictive Analytics
 a. Simulation (What could happen?)
 b. Forecasting (What will happen if current trends continue?)
5. Prescriptive Analytics/Optimization (What is the best course of action?)

source: http://www.slideshare.net/cscyphers/bd-101-slideshare
The INFORMS analytics process

- The figure below is taken from the Institute for Operations Research and Management Science.
- It’s similar to the Oracle process, but shows that the process is really cyclic.

source: https://www.informs.org/About-INFORMS/What-is-Analytics
Mason and Wiggins espouse a five-step process.

- Obtain
- Scrub
- Explore
- Model
- Interpret

What is important to note here is the “model” step. This step is crucial and involves developing an idealized model of “how the world works.” By tuning the parameters of this model, we try to reverse engineer the process that created the data.
Big Data and Big Analytics

- (Big) Data is the raw input to a cyclic process that extracts insight.
- Analytics is the process and the tools we can bring to bear on the data.
- Even simple procedures become a challenge when the data are “big.”
- On the other hand, more sophisticated analytics may be difficult, even with “small data.”
- Roughly speaking then, we can think of a two-step process.
 - Distill the big data to something more manageable using techniques that scale to large data sets (dimensionality reduction).
 - Apply more sophisticated analysis to the distilled data.
- Each of these steps requires distributed computing, but in the first case, the data are distributed and in the second case, the computation is distributed.
Big Data Analytics

Descriptive Analytics: Hadoop/Spark

Predictive and Prescriptive Analytics: Parallel Simulation/Optimization

source: http://www.prace-ri.eu/
Big Data Challenges
Big challenges

- Where does the challenge of Big Data come from?
 - The sheer amount of data is huge (Volume)
 - The data is streaming and must be analyzed in real-time (Velocity)
 - The data comes from many different sources in different forms (Variety)
 - The data is unreliable (Veracity)

- Often, the questions we are trying to answer also require Big Computation.

- The traditional model of a single compute “core” with associated local memory is not enough.
What does “scalability” mean?

- Why might things that work well at a small scale break down at large scale?
- Example: procedure to alphabetize books on a shelf
 - Take all books off shelf.
 - Scan to find first book in order and put it back on the shelf.
 - Repeat.
- This is what you would do with a single bookshelf, but does it scale?
- What if you are sorting the books in an entire library?
- With big data problems, things may break for reasons as simple as not having fast access to all the data from one location.
- The cost ($ and time) of moving data from one location to another is a big driver.
A more technical example

- Suppose you want to count the number of occurrences of each word in a set of documents.
 - Read each document sequentially.
 - Keep a separate list of all words seen so far with a count for each word.
 - Increment the count as you encounter each word.
- Now suppose you want to do this for every page on the World Wide Web.
- Suppose you also want to have an inverted list containing all pages on which a given word appears.
- The naive approach no longer works.
- This is why Google invented MapReduce, the methodology behind Hadoop.
- We’ll discuss more about this later.
Breaking it down

The following are primary Big Data challenge areas identified in a recent report by the Fields Institute:

1. Data Wrangling
2. Visualization
3. Reducing Dimensionality
4. Sparsity and Regularization
5. Optimization
6. Representation Learning (Deep Learning, Feature Learning)
 a. supervised
 b. unsupervised
7. Sequential Learning (Distributed, On-line)

Giving data structure

● Often, the first step is simply to give the data some “structure”.
● Example: E-mail (Hillary Clinton)
 ○ https://github.com/benhamner/hillary-clinton-emails
 ○ In pure text form, it’s unstructured.
 ○ However, we can extract structure from the text
 ■ Date
 ■ Subject
 ■ Sender
 ■ Recipient
 ■ Body
● Once we understand the structure, we can put the data in a database.
● This makes answering questions about the data quicker and easier.
● Scanned medical records are a similar but more complex example.
Example

Mining Transactional Data

● Walmart is an industry leader in “data warehousing” and mining transactional data.
● Their data warehouse contains approximately 2.5 Petabytes of data.
● This includes not only transactional data but social network data, etc.
● Types of analysis
 ○ Look for patterns in co-occurrence of purchases.
 ○ Targeted advertising based on predicted purchases.
 ○ Test different in-store promotions in each store and quickly propagate the ones that work.
● These are relatively simple things to analyze on a small scale, but...
Walmart’s Big Data ecosystem
Some Big Data application areas

General
- Recommendation systems
- Co-occurrence analysis
- Behavior discovery
- Classification/Machine learning
- Sorting/Indexing
- Search
- Network analysis
- Forecasting

Specific
- Image analysis
- Speech and hand-writing recognition
- Natural language processing
- Language translation
- Fraud detection
- Mining of social data
- Sentiment analysis
- Medical decision-making
- Portfolio analysis

Although this seems like a highly divergent list, the tasks to be executed have much in common.
Big Analytics Challenges
Large-scale optimization

- Many (most?) prescriptive and predictive analytics problems involve solving an underlying optimization problem.
- Often, we are selecting the predictive model that best fits the observed data.
 - Netflix
 - Image recognition
- We may also be trying decide on a course of action.
 - Based on projected demand, where should we locate stores?
 - Based on consumer behavior, where should our advertising dollars be spent?
- Solving these difficult optimization problems is the research focuses of the COR@L Laboratory.
Example: Neural networks (M. Takac, F. Curtis)

- We try to build a predictor (function) that can map input to a correct output.
- Example: hand-writing recognition
 - Input is a digitized sample of hand-writing.
 - Output is the text it represents.
 - We try to “learn” how to distinguish letters/numbers from each other by example.
- The algorithms are fashioned after how the human brain learns.

source: http://neuralnetworksanddeeplearning.com/chap1.html
Example: Recommendation (K. Scheinberg)

- Let’s consider the Netflix example again.
- How do we determine the important “features” that determine someone’s movie choices?
- One way is to use a statistical technique called “principal components analysis.”
- We build a table with columns being the movies and rows being the “features.”
- By solving an optimization problem, we construct a table that does the best job of predicting observed behavior and has a “small” number of rows.
Example: Facility location (L. Snyder, T.R.)

- The basic problem is where to locate facilities.
- Potentially massive customer data.
- First step is to distill data: segment customers, predict demand.
- Second step: locate facilities to maximize service level, minimize cost, ...
- Involves modeling of customer preferences for products, facilities,...
“Optimal” scheduling of an OR is extremely challenging.

First step is to estimate probability distributions for surgery (big data).

Second step is to determine schedule, taking into account:
- patient waiting time
- surgeon idle time
- staff overtime

Optimal schedule involves balancing all costs across all scenarios.

Tools and Technologies
Types of tools

- **Storage**
 - Database/Data Warehousing
 - Distributed Filesystems
 - Data Aggregation and Transfer

- **Descriptive Analysis**
 - MapReduce
 - Data Mining
 - Search

- **Predictive and Prescriptive Analytics**
 - Simulation
 - Forecasting
 - Business Intelligence
 - Optimization and Machine Learning

- **Programming and App Development**

Parallel data processing: Hadoop, Spark, etc.

- Idea: Move the computation to the data
- MapReduce paradigm
 - Developed and popularized by Google
 - Enables distributed big data analysis
 - Specify only 2 functions: MAP and REDUCE
 - Framework takes care of everything else (distributed data, communications,..)
- High performance requires fast network, purpose-built file system
- Figure shows prototypical “word counting” application.

source: http://dme.rwth-aachen.de/en/system/files/file_upload/project/MapReduce.jpg
MapReduce is a standard in cloud computing.

<table>
<thead>
<tr>
<th>Instance Type</th>
<th>Linux/UNIX Usage</th>
<th>Windows Usage</th>
</tr>
</thead>
<tbody>
<tr>
<td>m3.medium</td>
<td>$0.0081 per Hour</td>
<td>$0.0591 per Hour</td>
</tr>
<tr>
<td>m3.large</td>
<td>$0.0185 per Hour</td>
<td>$0.1171 per Hour</td>
</tr>
<tr>
<td>m3.xlarge</td>
<td>$0.0386 per Hour</td>
<td>$0.1382 per Hour</td>
</tr>
<tr>
<td>m3.2xlarge</td>
<td>$0.0714 per Hour</td>
<td>$0.2751 per Hour</td>
</tr>
<tr>
<td>m4.large</td>
<td>$0.0139 per Hour</td>
<td>$0.0264 per Hour</td>
</tr>
<tr>
<td>m4.xlarge</td>
<td>$0.0268 per Hour</td>
<td>$0.0513 per Hour</td>
</tr>
<tr>
<td>m4.2xlarge</td>
<td>$0.0537 per Hour</td>
<td>$0.1195 per Hour</td>
</tr>
<tr>
<td>m4.4xlarge</td>
<td>$0.1081 per Hour</td>
<td>$0.2051 per Hour</td>
</tr>
<tr>
<td>m4.10xlarge</td>
<td>$0.3453 per Hour</td>
<td>$0.5118 per Hour</td>
</tr>
</tbody>
</table>

- **2 CPU, 8 GB of RAM**
- **40 CPU, 160 GB of RAM**
Parallel computation: MPI, Condor

- Many difficult optimization problems are solved by *distributed algorithms*
 - Search methods can often be parallelized (partition solution space).
 - In iterative methods, we distribute things like function evaluation.
- We divide the computation among many computers to speed things up.
- “Dividing things up” sounds easy, but it really isn’t!
- Figuring out how to “divide things up” is the primary challenge.
Take-home messages

● Big Data Analytics challenges are driven mostly by scale.
 ○ The challenge of Big Data can be because of high volume, high velocity, and/or high variety.
 ○ The challenge of Big Analytics can be either because the data are big or the computations required to get insight are large-scale or both.

● Overcoming the challenges of scale requires a host of new technologies
 ○ Hardware: Storage, networking
 ○ Software: New programming paradigms, development environments
 ○ Mathematics: Development of fundamental techniques for mathematical analysis
 ○ Computer Science: Development of algorithms that are more scalable and parallelizable.

● Big Data Analytics = Big Data + Big Analytics

● Researchers in ISE at Lehigh are focused on solving today’s most difficult analytics challenge problems.
Credits

Thanks to

- Frank E. Curtis
- Katya Scheinberg
- Larry Snyder
- Bob Storer
- Martin Takac
- You!
Questions?