Tools for Modeling Optimization Problems
A Short Course

Modeling with Python

Dr. Ted Ralphs
Why Python?

• Pros
 – As with many high-level languages, development in Python is quick and painless (relative to C++!).
 – Python is popular in many disciplines and there is a dizzying array of packages available.
 – Python’s syntax is very clean and naturally adaptable to expressing mathematical programming models.
 – Python has the primary data structures necessary to build and manipulate models built in.
 – There has been a strong movement toward the adoption of Python as the high-level language of choice for (discrete) optimizers.
 – Sage is quickly emerging as a very capable open-source alternative to Matlab.

• Cons
 – Python’s one major downside is that it can be very slow.
 – Solution is to use Python as a front-end to call lower-level tools.
Drinking the Python Kool-Aid

I learned it last night! Everything is so simple! Hello world is just print "Hello, world!"

I dunno...
Dynamic typing?
Whitespace?
Come join us!
Programming is fun again!
It's a whole new world up here!
But how are you flying?

I just typed import antigravity
That's it?
...I also sampled everything in the medicine cabinet for comparison.
But I think this is the Python.
Two-minute Python Primer

• Python is object-oriented with a light-weight class and inheritance mechanism.

• There is no explicit compilation; scripts are interpreted.

• Variables are dynamically typed with no declarations.

• Memory allocation and freeing all done automatically.

• Indentation has a syntactic meaning!

• Code is usually easy to read “in English” (keywords like is, not, and in).

• Everything can be “printed.”

• Important programming constructs
 – Functions/Classes
 – Looping
 – Conditionals
 – Comprehensions
Two-minute Python Primer (cont’d)

• **Built-in data structures:**
 – Lists (dynamic arrays)
 – Tuples (static arrays)
 – Dictionaries (hash tables)
 – Sets

• **Class mechanism:**
 – Classes are collections of *data* and associated *methods*.
 – Members of a class are called *attributes*.
 – Attributes are accessed using “.” syntax.
Introduction to PuLP

- PuLP is a modeling language in COIN-OR that provides data types for Python that support algebraic modeling.
- PuLP only supports development of linear models.
- Main classes
 - LpProblem
 - LpVariable
- Variables can be declared individually or as “dictionaries” (variables indexed on another set).
- We do not need an explicit notion of a parameter or set here because Python provides data structures we can use.
- In PuLP, models are technically “concrete,” since the model is always created with knowledge of the data.
- However, it is still possible to maintain a separation between model and data.
Bond Portfolio Example: Simple PuLP Model
(bonds_simple-PuLP.py)

```python
from pulp import LpProblem, LpVariable, lpSum, LpMaximize, value

prob = LpProblem("Dedication Model", LpMaximize)

X1 = LpVariable("X1", 0, None)
X2 = LpVariable("X2", 0, None)

prob += 4*X1 + 3*X2
prob += X1 + X2 <= 100
prob += 2*X1 + X2 <= 150
prob += 3*X1 + 4*X2 <= 360

prob.solve()

print 'Optimal total cost is: ', value(prob.objective)

print "X1 :", X1.varValue
print "X2 :", X2.varValue
```
Notes About the Model

- Like the simple AMPL model, we are not using indexing or any sort of abstraction here.
- The syntax is very similar to AMPL.
- To achieve separation of data and model, we use Python’s `import` mechanism.
Bond Portfolio Example: Abstract PuLP Model
(bonds-PuLP.py)

from pulp import LpProblem, LpVariable, lpSum, LpMaximize, value
from bonds import bonds, max_rating, max_maturity, max_cash
prob = LpProblem("Bond Selection Model", LpMaximize)
buy = LpVariable.dicts('bonds', bonds.keys(), 0, None)
prob += lpSum(bonds[b]['yield'] * buy[b] for b in bonds)
prob += lpSum(buy[b] for b in bonds) <= max_cash, "cash"
prob += (lpSum(bonds[b]['rating'] * buy[b] for b in bonds)
 <= max_cash*max_rating, "ratings")
prob += (lpSum(bonds[b]['maturity'] * buy[b] for b in bonds)
 <= max_cash*max_maturity, "maturities")
Notes About the Model

- We can use Python’s native `import` mechanism to get the data.
- Note, however, that the data is read and stored before the model.
- This means that we don’t need to declare sets and parameters.
- Carriage returns are syntactic (parentheses imply line continuation).

- **Constraints**
 - Naming of constraints is optional and only necessary for certain kinds of post-solution analysis.
 - Constraints are added to the model using a very intuitive syntax.
 - Objectives are nothing more than expressions that are to be optimized rather than explicitly constrained.

- **Indexing**
 - Indexing in Python is done using the native dictionary data structure.
 - Note the extensive use of comprehensions, which have a syntax very similar to quantifiers in a mathematical model.
prob.solve()

epsilon = .001

print 'Optimal purchases:'
for i in bonds:
 if buy[i].varValue > epsilon:
 print 'Bond', i, '：“”, buy[i].varValue
Notes About the Data Import (bonds_data.py)

- We are storing the data about the bonds in a “dictionary of dictionaries.”
- With this data structure, we don’t need to separately construct the list of bonds.
- We can access the list of bonds as `bonds.keys()`.
- Note, however, that we still end up hard-coding the list of features and we must repeat this list of features for every bond.
- We can avoid this using some advanced Python programming techniques, but SolverStudio makes this easy.
PuLP Model in SolverStudio
(FinancialModels.xlsx:Bonds-PuLP)

- We’ve explicitly allowed the option of optimizing over one of the features, while constraining the others.
- Later, we’ll see how to create tradeoff curves showing the tradeoffs among the constraints imposed on various features.
Portfolio Dedication

Definition 1. Dedication or cash flow matching refers to the funding of known future liabilities through the purchase of a portfolio of risk-free non-callable bonds.

Notes:

- Dedication is used to eliminate interest rate risk.
- Dedicated portfolios do not have to be managed.
- The goal is to construct such portfolio at a minimal price from a set of available bonds.
- This is a multi-period model.
Example: Portfolio Dedication

- A pension fund faces liabilities totalling ℓ_j for years $j = 1, ..., T$.
- The fund wishes to dedicate these liabilities via a portfolio comprised of n different types of bonds.
- Bond type i costs c_i, matures in year m_i, and yields a yearly coupon payment of d_i up to maturity.
- The principal paid out at maturity for bond i is p_i.
LP Formulation for Portfolio Dedication

We assume that for each year j there is at least one type of bond i with maturity $m_i = j$, and there are none with $m_i > T$.

Let x_i be the number of bonds of type i purchased, and let z_j be the cash on hand at the beginning of year j for $j = 0, \ldots, T$. Then the dedication problem is the following LP,

$$\min_{(x,z)} z_0 + \sum_i c_i x_i$$

s.t. $z_{j-1} - z_j + \sum_{\{i : m_i \geq j\}} d_i x_i + \sum_{\{i : m_i = j\}} p_i x_i = \ell_j$, \quad $(j = 1, \ldots, T - 1)$

$$z_T + \sum_{\{i : m_i = T\}} (p_i + d_i) x_i = \ell_T.$$

$z_j \geq 0, j = 1, \ldots, T$

$x_i \geq 0, i = 1, \ldots, n$
AMPL Model for Dedication (dedication.mod)

- In multi-period models, we have to somehow represent the set of periods.
- Such a set is different from a generic set because it involves ranged data.
- We must somehow do arithmetic with elements of this set in order to express the model.
- In AMPL, a ranged set can be constructed using the syntax 1..T.
- Both endpoints are included in the range.
- Another important feature of the above model is the use of conditionals in the limits of the sum.
- Conditionals can be used to choose a subset of the items in a given set satisfying some condition.
PuLP Model for Dedication (dedication-PuLP.py)

- We are parsing the AMPL data file with a custom-written function `read_data` to obtain the data.
- The data is stored in a two-dimensional table (dictionary with tuples as keys).
- The `range` operator is used to create ranged sets in Python.
- The upper endpoint is not included in the range and ranges start at 0 by default (`range(3) = [0, 1, 2]`).
- The `len` operator gets the number of elements in a given data structure.
- Python also supports conditions in comprehensions, so the model reads naturally in Python’s native syntax.
- See also `FinancialModels.xlsx:Dedication-PuLP`.
Introduction to Pyomo

• Pyomo further generalizes the basic framework of PuLP.
 – Support for nonlinear functions.
 – Constraint are defined using Python functions.
 – Support for the construction of “true” abstract models.
 – Built-in support for reading AMPL-style data files.

• Primary classes
 – ConcreteModel, AbstractModel
 – Set, Parameter
 – Var, Constraint
Concrete Pyomo Model for Dedication

(dedication-PyomoConcrete.py)

- This model is almost identical to the PuLP model.
- The only substantial difference is the way in which constraints are defined, using “rules.”
- Indexing is implemented by specifying additional arguments to the rule functions.
- When the rule function specifies an indexed set of constraints, the indices are passed through the arguments to the function.
- The model is constructed by looping over the index set, constructing each associated constraint.
- Note that if the name of a constraint is `xxx`, the rule function is assumed to be `xxx_rule` unless otherwise specified.
- Note the use of the Python slice operator to extract a subset of a ranged set.
Instantiating and Solving a Pyomo Model

- The easiest way to solve a Pyomo Model is from the command line.

```bash
pyomo --solver=cbc --summary dedication-PyomoConcrete.py
```

- It is instructive, however, to see what is going on under the hood.
 - Pyomo explicitly creates an “instance” in a solver-independent form.
 - The instance is then translated into a format that can be understood by the chosen solver.
 - After solution, the result is imported back into the instance class.

- We can explicitly invoke these steps in a script.

- This gives a bit more flexibility in post-solution analysis.
Abstract Pyomo Model for Dedication
(dedication-PyomoAbstract.py)

- In an abstract model, we declare sets and parameters abstractly.
- After declaration, they can be used without instantiation, as in AMPL.
- When creating the instance, we explicitly pass the name of an AMPL-style data file, which is used to instantiate the concrete model.

```python
instance = model.create('dedication.dat')
```

- See also FinancialModels.xlsx:Dedication-Pyomo.
Example: Short Term Financing

A company needs to make provisions for the following cash flows over the coming five months: $-150K$, $-100K$, $200K$, $-200K$, $300K$.

- The following options for obtaining/using funds are available,
 - The company can borrow up to $100K$ at 1% interest per month,
 - The company can issue a 2-month zero-coupon bond yielding 2% interest over the two months,
 - Excess funds can be invested at 0.3% monthly interest.

- How should the company finance these cash flows if no payment obligations are to remain at the end of the period?
Example (cont.)

- All investments are risk-free, so there is no stochasticity.

- What are the decision variables?
 - x_i, the amount drawn from the line of credit in month i,
 - y_i, the number of bonds issued in month i,
 - z_i, the amount invested in month i,

- What is the goal?
 - To maximize the the cash on hand at the end of the horizon.
Example (cont.)

The problem can then be modelled as the following linear program:

\[
\begin{align*}
\max_{(x,y,z,v) \in \mathbb{R}^{12}} & \quad f(x, y, z, v) = v \\
\text{s.t.} & \quad x_1 + y_1 - z_1 = 150 \\
& \quad x_2 - 1.01x_1 + y_2 - z_2 + 1.003z_1 = 100 \\
& \quad x_3 - 1.01x_2 + y_3 - 1.02y_1 - z_3 + 1.003z_2 = -200 \\
& \quad x_4 - 1.01x_3 - 1.02y_2 - z_4 + 1.003z_3 = 200 \\
& \quad -1.01x_4 - 1.02y_3 - v + 1.003z_4 = -300 \\
& \quad 100 - x_i \geq 0 \quad (i = 1, \ldots, 4) \\
& \quad x_i \geq 0 \quad (i = 1, \ldots, 4) \\
& \quad y_i \geq 0 \quad (i = 1, \ldots, 3) \\
& \quad z_i \geq 0 \quad (i = 1, \ldots, 4) \\
& \quad v \geq 0.
\end{align*}
\]
AMPL Model for Short Term Financing

(short_term_financing.*)

- Note that we’ve created some “dummy” variables for use of bonds and credit and investment before time zero.

- These are only for convenience to avoid edge cases when expressing the constraints.

- Again, we see the use of the parameter T to capture the number of periods.

- See also FinancialModels.xlsx:Short-term-financing-AMPL.