
IE 495 Lecture 8

September 21, 2000

Reading for This Lecture

� Primary

� AHU, Chapter 2

� Secondary

� Horowitz and Sahni, Chapter 2, Section 1

Parallel Algorithm Design

Review from last lecture

Design Issues

� Platform/Architecture

� Task Decomposition

� Task Mapping/Scheduling

� Communication Protocol

Platforms

� High Performance Parallel Computers

� Massively parallel

� Distributed

� "Off the shelf" Parallel Computers

� Small shared memory servers

� Virtual parallel computers

Approaches to Task Decomposition

� Fine-grained parallelism

� Suited for massively parallel systems (many small processors)

� These are the algorithms we've primarily talked about so far .

� Course-grained parallelism

� Suited to small numbers of more powerful processors.

� Data decomposition

� Recursion/Divide and Conquer

� Domain Decomposition

� Functional parallelism

� Data Dependency Analysis

� These algorithms are more common and easier to implement.

Approaches to Mapping

� Concurrency

� Data dependency analysis

� Locality

� Interconnection network

� Communication pattern

� Mapping is an optimization problem.

� These are very difficult to solve in general.

Communication Protocols
Message-passing

� Used primarily in distributed-memory or "hybrid"
environments.

� Data is passed through explicit send and receive function
calls.

� There is no explicit synchronization.

� In general, this is the most flexible and portable protocol.

� PVM and MPI are the established standards.

Comunication Protocols
OpenMP/Threads

� Used in shared-memory environments.

� Parallelism through "threading".

� Threads communicate through global memory.

� Can have explicit synchronization.

� OpenMP is the emerging standard.

OpenMP/Threads

Single Process

Thread 1 Thread 3Thread 2

Global Memory

OpenMP Implementation

� OpenMP is implemented through compiler directives.

� User is responsible for indicating what code segments
should be performed in parallel.

� The user is also responsible for eliminating potential
memory conflicts, etc.

� The compiler is responsible for inserting platform-
specific function calls, etc.

OpenMP Features

� Capabilities are dependent on the compiler.

� Primarily used on shared-memory architectures

� Can work in distributed-memory environments (TreadMarks)

� Explicit synchronization

� Locking functions

� Critical regions

� Private and shared variables

Using OpenMP

� Compiler directives

� parallel

� parallel for

� parallel sections

� barrier

� private

� critical

� Shared library functions

� omp_get_num_threads()

� omp_set_lock()

OpenMP Example

OpenMP Concepts and Issues

� Race Conditions

� Conflicts between processes in updating data.

� Deadlocks

� Critical regions

� Lock functions

And Now For Something
Completely Different...

Basic Data Structures

What is a data structure?

� Data structures are schemes for organizing and storing
sets.

� Data structures make it easy to perform certain set
operations.

� Examples of set operations.

� add

� delete

� find_min

� delete_min

� union

Choosing the right data structure

� Data structures consist of

� a scheme for storing the set(s), and

� algorithms for performing the desired operations

� Hence, each set operation has an associated complexity

� To choose a data structure, you should know

� something about the elements of the set, and

� what operations you will want to perform on the set.

Example: Lists

� A list is a finite sequence of elements drawn from a set

� List operations

� insert()

� delete()

� concatenate()

� split()

� List storage

� array

� linked list

Linked Lists

Item
1

Item
1

Item
1

Item
1

Item
1

NAME NEXT

0

1

2

3

4

5

1

3

0

4

2

0

-

Item 1

Item 2

Item 3

Item 4

Empty

