|E 495 Lecture /

September 19, 2000



Reading for This Lecture

* Primary
- PVM User's Guide and Tutorial (Chapters 1-4 plus)
— OpenMP Introduction and Specification

e Secondary
— Roosta, Chapter 4, Sections 1 and 3, Chapter 5



Parallel Algorithm Design



Design Issues

Platform/Architecture
Task Decomposition

Task Mapping/Scheduling
Communication Protocol



Platforms

* High Performance Parallel Computers
— Massively parallel
- Distributed

e "Off the shelf" Parallel Computers

— Small shared memory servers
- Virtual parale computers



Approaches to Task Decomposition

* Fine-grained parallelism
— Suited for massively parallel systems (many small processors)
- These are the algorithms we've primarily talked about so far .

e Course-grained parallelism

— Suited to small numbers of more powerful processors.
- Data decomposition

* Recursion/Divide and Conquer
* Domain Decomposition

- Functional parallelism
» Data Dependency Analysis
- These algorithms are more common and easier to implement.



Approaches to Mapping

Concurrency
— Data dependency analysis
Locality

- Interconnection network
— Communication pattern

Mapping is an optimization problem.
These are very difficult to solve in general.



Communication Protocols
M essage-passing

Used primarily in distributed-memory or "hybrid"
environments.

Data is passed through explicit send and receive function
calls.

There is no explicit synchronization.

In general, thisis the most flexible and portable protocol.
PVM and MPI are the established standards.



Comunication Protocols
OpenM P/Threads

Used in shared-memory environments.
Parallelism through "threading".

Threads communicate through global memory.
Can have explicit synchronization.

OpenMP is the emerging standard.



Parallel Virtual Machine
PVM

Computer 1 Computer 2

Task 1 Task 2 Task 3 Task 4

. e

| nterconnection Network




PVM Implementation Paradigms

* Master-slave computations

— Primarily used for functional parallelism.

- Master starts up slaves, sends them data, compiles results.
* Crowd computations

- Primarily used for data parallel implementations.

— All tasks run same program.
- One desginated task does |/O, startup, shutdown, €tc.

* Tree Computations

— Can be used or divide and conquer.
— Not commonly used.



PVM Features

Works in heterogeneous environments
Dynamic process control
Dynamic configuration of machine

Works in shared-memory, distributed-memory, and
hybrid environements.

Extremely flexible
Extremely portable
Not always efficient



Using PVM

e Shared Library Functions

- pvm_mytid()

- pvm_spawn(...)

- pvmm_pk* (type *array, int length,

- pvm_send(int tid, int msgtag)

- pvm_recv(int tid, int msgtag)

- pvmm_upk* (type *array, int length,
* PVM Console



PVM Example



PVM Concepts and | ssues

Lack of explicit synchronization
Load balancing/work distribution

- Master/slave computations
- Crowd computations

Deadlock
Mapping

— Difficult to control

- Can effect performance significantly
Performance tuning



OpenMP/Threads

Single Process

—» Global Memory




OpenMP Implementation

OpenMP is implemented through compiler directives.

User isresponsible for indicating what code segments
should be performed in parallel.

The user isaso responsible for eliminating potential
memory conflicts, etc.

The compiler isresponsible for inserting platform-
specific function calls, etc.



OpenMP Features

Capabilities are dependent on the compiler.

— Primarily used on shared-memory architectures
- Can work in distributed-memory environments (TreadM arks)

Explicit synchronization

L ocking functions

Critical regions

Private and shared variables



Using OpenMP

* Compiler directives
- parallel
- parallel for
- parallel sections
- barrier
- private
- critical
e Shared library functions

- omp_get_num_threads()
- omp_set_lock()



OpenMP Example



OpenMP Concepts and Issues

Race Conditions

— Conflicts between processes in updating data.

Deadlocks
Critical regions
Lock functions



