
IE 495 Lecture 7

September 19, 2000



Reading for This Lecture

� Primary

� PVM User's Guide and Tutorial (Chapters 1-4 plus)

� OpenMP Introduction and Specification

� Secondary

� Roosta, Chapter 4, Sections 1 and 3, Chapter 5



Parallel Algorithm Design



Design Issues

� Platform/Architecture

� Task Decomposition

� Task Mapping/Scheduling

� Communication Protocol



Platforms

� High Performance Parallel Computers

� Massively parallel

� Distributed

� "Off the shelf" Parallel Computers

� Small shared memory servers

� Virtual parallel computers



Approaches to Task Decomposition

� Fine-grained parallelism

� Suited for massively parallel systems (many small processors)

� These are the algorithms we've primarily talked about so far .

� Course-grained parallelism

� Suited to small numbers of more powerful processors.

� Data decomposition

� Recursion/Divide and Conquer

� Domain Decomposition

� Functional parallelism

� Data Dependency Analysis

� These algorithms are more common and easier to implement.



Approaches to Mapping

� Concurrency

� Data dependency analysis

� Locality

� Interconnection network

� Communication pattern

� Mapping is an optimization problem.

� These are very difficult to solve in general.



Communication Protocols
Message-passing

� Used primarily in distributed-memory or "hybrid" 
environments.

� Data is passed through explicit send and receive function 
calls.

� There is no explicit synchronization.

� In general, this is the most flexible and portable protocol.

� PVM and MPI are the established standards.



Comunication Protocols
OpenMP/Threads

� Used in shared-memory environments.

� Parallelism through "threading".

� Threads communicate through global memory.

� Can have explicit synchronization.

� OpenMP is the emerging standard.



Parallel Virtual Machine
PVM

Task 1 Task 4Task 3Task 2

PVMD PVMD

Computer 1 Computer 2

Interconnection Network



PVM Implementation Paradigms

� Master-slave computations

� Primarily used for functional parallelism.

� Master starts up slaves, sends them data, compiles results.

� Crowd computations

� Primarily used for data parallel implementations.

� All tasks run same program.

� One desginated task does I/O, startup, shutdown, etc.

� Tree Computations

� Can be used or divide and conquer.

� Not commonly used.



PVM Features

� Works in heterogeneous environments

� Dynamic process control

� Dynamic configuration of machine

� Works in shared-memory, distributed-memory, and 
hybrid environements.

� Extremely flexible

� Extremely portable

� Not always efficient



Using PVM

� Shared Library Functions

� pvm_mytid()

� pvm_spawn(...)

� pvm_pk*(type *array, int length, ...)

� pvm_send(int tid, int msgtag)

� pvm_recv(int tid, int msgtag)

� pvm_upk*(type *array, int length, ...)

� PVM Console



PVM Example



PVM Concepts and Issues

� Lack of explicit synchronization

� Load balancing/work distribution 

� Master/slave computations

� Crowd computations

� Deadlock

� Mapping

� Difficult to control

� Can effect performance significantly

� Performance tuning



OpenMP/Threads

Single Process

Thread 1 Thread 3Thread 2

Global Memory



OpenMP Implementation

� OpenMP is implemented through compiler directives.

� User is responsible for indicating what code segments 
should be performed in parallel.

� The user is also responsible for eliminating potential 
memory conflicts, etc.

� The compiler is responsible for inserting platform-
specific function calls, etc.



OpenMP Features

� Capabilities are dependent on the compiler.

� Primarily used on shared-memory architectures

� Can work in distributed-memory environments (TreadMarks)

� Explicit synchronization

� Locking functions

� Critical regions

� Private and shared variables



Using OpenMP

� Compiler directives

� parallel 

� parallel for

� parallel sections

� barrier

� private

� critical

� Shared library functions

� omp_get_num_threads()

� omp_set_lock()



OpenMP Example



OpenMP Concepts and Issues

� Race Conditions

� Conflicts between processes in updating data.

� Deadlocks

� Critical regions

� Lock functions


