IE 495 Lecture 3

September 5, 2000

Reading for this lecture

- Primary
 - Miller and Boxer, Chapter 1
 - Aho, Hopcroft, and Ullman, Chapter 1
- Secondary
 - Parberry, Chapters 3 and 4
 - Cosnard and Trystram, Chapter 5
 - Chaudhuri, Chapters 2 and 3

Models of Computation

Analysis of Algorithms

- We are interested in the time and space needed to perform an algorithm.
- There are several ways of approaching this analysis.
 - Worst case
 - Average case
 - Best case
- Worst case is the most common type of analysis (why?).
- Generally speaking, time is the most constraining resource.

Random Access Machine Model

A RAM Program

- At each time step, one elementary operation is completed.
- Sample list of elementary operations

- LOAD	- READ
- STORE	- WRITE
- ADD	- JUMP
- SUB	- JGTZ
- MULT	- JZERO
- DIV	- HALT

Assumptions of the RAM model

- The program is not stored in memory and hence cannot be modified.
- The problem is small enough to fit in the memory.
- Any size integer is allowed.
- Fundamental operations can be performed in one unit of time.
- Any memory location can be accessed in one unit of time.
- This is what is known as a "unit cost model".

Assessment of the model

- The details of the model are not especially important.
- Sequential Computation Thesis: All "reasonable" models are "polynomially equivalent".
- The assumptions of the model allow us to do rigorous asymptotic analysis.
- It is possible to abuse the assumptions of the model.
- *Log cost* model takes into account the size of the numbers.

The Basic PRAM model

Assumptions of the PRAM model

- This is a synchronous model with shared memory.
- There are a fixed number of processors (bounded).
- All processors execute the same program, but each one can be in a different place.
- At each time step, each processor performs one elementary operation.
- Memory access is performed in constant time.
- Processors are not linked directly.
- Communication issues are not considered.
- What are some problems with this model?

Concurrent Memory Access

- What if two processors try to read/write to/from the same memory location in the same time step?
- We have to resolve these conflicts.
- Four possible models:
 - **CREW** <--- we will use this one (most of the time)
 - CRCW
 - EREW
 - ERCW

Assessment of the PRAM Model(s)

- This model is not as "robust" as the RAM model.
- However, it allows us to do rigorous analysis.
- It is a reasonable model of a small parallel machine.
- It is not "scalable".
- It does not model distributed memory or interconnection networks.
- How do we fix it?

Distributed PRAM Model

- Attempt to model the interconnection network.
- Eliminate global memory.
- Each processor can read or write only from its neighbors' registers.
- This will likely increase the complexity of many algorithms, but is more realistic and scalable.

Algorithmic Complexity

Algorithmic Complexity

- The time complexity of an algorithm is the number of time steps needed to execute it.
 - Worst case
 - Average case
 - Best case
- The space complexity is the number of registers required to execute the algorithm.
- Complexity is usually expressed as a function *f*(*n*), where *n* is the size of the input.
- Algorithms that execute in polynomial time and space are usually considered "good".

Asymptotic Analysis

- We are interested in how algorithms behave as the input size increases, i.e. asymptotically.
- Order relations help us group functions according to their approximate rate of growth.
- Definitions All constants are positive in these definitions

 $-f(n) \in \mathcal{O}(g(n)) \Leftrightarrow \exists c, n_0 \text{ s.t. } f(n) \leq cg(n) \forall n \geq n_0$

 $-f(n) \in \Omega(g(n)) \Leftrightarrow \exists c, n_0 \text{ s.t. } f(n) \ge cg(n) \forall n \ge n_0$

 $- f(n) \in \Theta(g(n)) \Leftrightarrow \exists c_1, c_2, n_0 \text{ s.t. } c_1 g(n) \leq f(n) \leq c_2 g(n) \forall n \geq n_0$

- $-f(n) \in o(g(n)) \Leftrightarrow \forall C, \exists n_0 \text{ s.t. } f(n) < Cg(n) \forall n \ge n_0$
- $f(n) \in \omega(g(n)) \Leftrightarrow \forall C, \exists n_0 \text{ s.t. } f(n) > Cg(n) \forall n \ge n_0$

Limitations of Asymptotic Analysis

- Ignores constant factors
 - These are nearly impossible to model
 - Example: for (i = 0; i < 10; i++) write i; for (i = 9; i >= 0; i--) write i;
- Small problem sizes
- Worst case vs. average case

Comparing the models Simple examples

- Broadcasting a unit of data
 - O(1) under the shared-memory CREW model
 - O(n) under the shared-memory EREW model
 - $O(\sqrt{n})$ under the distributed-memory CREW model on a mesh
 - $O(\log n)$ under the distributed-memory tree model
- Note: These models are architecture dependent
- This is the biggest difference between sequential and parallel complexity analysis

Semigroup operations

• Definition: A binary associative operation.

 $- \Rightarrow (x \otimes y) \otimes z = x \otimes (y \otimes z)$

- Typical semigroup operations.
 - maximum
 - minimum
 - sum
 - product
 - OR
- Can be used to compare parallel architectures.

Semigroup operations example

- RAM Algorithm
- Shared-memory PRAM Algorithm <u>Assumptions</u>: *n* processors, CREW <u>Input</u>: An array $X = [x_1, x_2, ..., x_{2n}]$ <u>Output</u>: The smallest entry of X

```
for (i = 0; i < log<sub>2</sub>(n); i++){
    parallel for (j = 0; j < 2<sup>log(n)-i-1</sup>; j++){
        read x<sub>2j-1</sub> and x<sub>2j</sub>;
        write min(x<sub>2j-1</sub>, x<sub>2j</sub>);
    }
}
```

 t_1 is the desired minimum

Example: Insertion Sort