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Reading for This Lecture

� Primary

� Bazaraa, Sherali, and Sheti, Chapter 2.

� Chvatal, Chapters 6 and 7.



Linear Programming



Introduction

� Consider again the system Ax = b, A ∈ Rm×n, b ∈ Rm.

� In this problem, there are either

� no solutions

� one solution

� infinitely many solutions (if n > m)

� The problem of linear programming is

min cTx
s.t. Ax = b

x  ≥ 0



The Simplex Algorithm

� Note that x
B
 = B-1b - B-1Nx

N

� Hence, cTx = c
B

Tx
B 
+ c

N
Tx

N
 = c

B
TB-1b  + (c

N
T - c

B
TB-1N)x

N

� So if c
N

T - c
B

TB-1N ≥ 0, we have found the optimal 
solution (why?).

� Otherwise, suppose some component of c
N

T - c
B

TB-1N is 
negative.

� Then we raise the value of the corresponding variable as 
much as possible while maintaining feasibility.



Summary of the Simplex Algorithm

� Simplex algorithm

� Compute yB = c
B

T

� Choose a column of a
j
 of N such ya

j
 < c

j

� Compute Bd = a
j

� Find the largest t such that x
B
* - td ≥ 0

� Set the value of x
j
 to t and the values of the basic variables to 

x
B
* - td.

� Update the basis.

� The only hard part is implementing the last step.



Implementing the Algorithm

� Let B
k
 be the basis after the kth iteration.

� Note that B
k
 = B

k-1
E

k
 where 

� Ek is the identity matrix with the pth column replaced by 
d = B

k-1
-1 a

j
 (already computed).

� p is the "leaving column"

� So, we have B
k
 = B

0
E

1
 .... E

k
 = LUE

1
 .... E

k

� To update at each iteration, we merely append the next 
eta matrix to the list.

� Often, B
0
 is the identity matrix.



Refactorizing the Basis

� After many iterations, it can become inefficient to solve 
these systems.

� Periodically, throw away all the eta files and calculate a 
brand new LU factorization.

� How often should this be done?

� It depends on the matrix.

� Under some fairly reasonable assumptions, the "break-
even" point seems to be ≈ 15 iterations.



Another Approach

� Update the LU factorization directly

� We have B
k
 = L

k
U

k
.

� We also have B
k+1

 = B
k
E

k+1
.

� Hence, B
k+1

 = L
k
U

k
E

k+1
.

� We can permute the rows and columns of V = U
k
E

k+1
.
 

such that V differs from an upper-triangular matrix in at 
most one row.

� It is then easy to perform an LU factorization of V.

� This can easily be made into an LU factorization of B
k+1

.



Issues to be addressed

� Ensuring numerical accuracy

� Conditioning

� Stability

� Zero tolerances

� Ensuring efficiency

� Maintaining sparsity

� Updating basis factorization



Dealing with Large Matrices

� Recall this step from the Simplex Algorithm:

� Choose a column of a
j
 of N such ya

j
 < c

j

� This step is called pricing.

� One approach is to choose the quantity c
j
 - ya

j
 to be as 

large as possible.

� If the number of columns of A is large, then the pricing 
step can be cumbersome.

� Partial pricing is the practice of only pricing out a small 
subset of possible columns.



Column Generation

� Notice that the problem max {c
j
 - ya

j
} is an optimization 

problem.

� Notice also that it is not necessary to have all the 
columns present in the matrix.

� Suppose the columns of the matrix have a special 
structure that allows us to generate them "automatically".

� We can sole the above optimization problem to 
determine the next column to be pivoted in.

� All we really need is the columns of the optimal basis. 



Constraint Generation

� Consider an LP specified as follows

min cTx
s.t. Ax ≤ b

� In this case, we can sometimes have m >> n.

� Constraints (rows) can also be automatically generated.

� This is called separation.



Deleting Columns and Rows

� If the slack variable for a particular row is basic, then 
that row is "inactive".

� Inactive rows can be deleted from the problem without 
changing the optimal solution.

� Similarly, there are methods of proving that a particular 
column can never be basic in an optimal solution.

� While solving large LP's by column and constraint 
generation, we can simultaneously purge ineffective 
rows and columns and generate new ones.

� This technique can be very effective.



Integer Linear Programs



Integer Linear Programs

� Now one more layer of complication. . . .

� Suppose that we have an LP in which some of the 
variables are constrained to be integer-valued.

min cTx
s.t. Ax = b

x  ≥ 0
x ∈ Zn

� The Simplex Algorithm can't handle this.



LP-based Branch and Bound

� Basic Method

� Formulate and solve the LP relaxation.

� If the optimal solution is integral, STOP.

� Otherwise, branch on some fractional variable

� Iterate

� Notice that solving the LP serves a three-fold purpose

� Generates a lower bound

� Possibly generates a feasible solution

� Indicates how to branch



Example: Traveling Salesman 
Problem


