IE 495 Lecture 25

November 30, 2000

Reading for This Lecture

- Primary
- Bazaraa, Sherali, and Sheti, Chapter 2.
- Chvatal, Chapters 6 and 7.

Linear Programming

Introduction

- Consider again the system $A x=b, A \in \mathbf{R}^{m \times n}, b \in \mathbf{R}^{m}$.
- In this problem, there are either
- no solutions
- one solution
- infinitely many solutions (if $\mathrm{n}>\mathrm{m}$)
- The problem of linear programming is

$$
\begin{array}{ll}
\min & c^{\mathrm{T}} x \\
\text { s.t. } & A x=b \\
& x \geq 0
\end{array}
$$

The Simplex Algorithm

- Note that $x_{B}=B^{-1} b-B^{-1} N x_{N}$
- Hence, $c^{\mathrm{T}} x=c_{B}{ }^{\mathrm{T}} x_{B}+c_{N}{ }^{\mathrm{T}} x_{N}=c_{B}{ }^{\mathrm{T}} B^{-l} b+\left(c_{N}{ }^{\mathrm{T}}-c_{B}{ }^{\mathrm{T}} B^{-l} N\right) x_{N}$
- So if $c_{N}{ }^{\mathrm{T}}-c_{B}{ }^{\mathrm{T}} B^{-l} N \geq 0$, we have found the optimal solution (why?).
- Otherwise, suppose some component of $c_{N}{ }^{\mathrm{T}}-c_{B}{ }^{\mathrm{T}} B^{-1} N$ is negative.
- Then we raise the value of the corresponding variable as much as possible while maintaining feasibility.

Summary of the Simplex Algorithm

- Simplex algorithm
- Compute $y B=c_{B}{ }^{\text {T }}$
- Choose a column of a_{j} of N such $y a_{j}<c_{j}$
- Compute $B d=a_{j}$
- Find the largest t such that $x_{B}{ }^{*}-t d \geq 0$
- Set the value of x_{j} to t and the values of the basic variables to $x_{B}{ }^{*}-t d$.
- Update the basis.
- The only hard part is implementing the last step.

Implementing the Algorithm

- Let B_{k} be the basis after the $\mathrm{k}^{\text {th }}$ iteration.
- Note that $\mathrm{B}_{\mathrm{k}}=\mathrm{B}_{\mathrm{k}-1} \mathrm{E}_{\mathrm{k}}$ where
- E_{k} is the identity matrix with the $\mathrm{p}^{\text {th }}$ column replaced by $\mathrm{d}=\mathrm{B}_{\mathrm{k}-1}{ }^{-1} \mathrm{a}_{\mathrm{j}}$ (already computed).
- p is the "leaving column"
- So, we have $B_{k}=B_{0} E_{1} \ldots E_{k}=L U E_{1} \ldots . E_{k}$
- To update at each iteration, we merely append the next eta matrix to the list.
- Often, B_{0} is the identity matrix.

Refactorizing the Basis

- After many iterations, it can become inefficient to solve these systems.
- Periodically, throw away all the eta files and calculate a brand new LU factorization.
- How often should this be done?
- It depends on the matrix.
- Under some fairly reasonable assumptions, the "breakeven" point seems to be ≈ 15 iterations.

Another Approach

- Update the LU factorization directly
- We have $B_{k}=L_{k} U_{k}$
- We also have $B_{k+1}=B_{k} E_{k+1}$.
- Hence, $B_{k+1}=L_{k} U_{k} E_{k+1}$.
- We can permute the rows and columns of $V=U_{k} E_{k+1}$. such that V differs from an upper-triangular matrix in at most one row.
- It is then easy to perform an LU factorization of V.
- This can easily be made into an LU factorization of \boldsymbol{B}_{k+1}.

Issues to be addressed

- Ensuring numerical accuracy
- Conditioning
- Stability
- Zero tolerances
- Ensuring efficiency
- Maintaining sparsity
- Updating basis factorization

Dealing with Large Matrices

- Recall this step from the Simplex Algorithm:
- Choose a column of a_{j} of N such $y a_{j}<c_{j}$
- This step is called pricing.
- One approach is to choose the quantity $c_{j}-y a_{j}$ to be as large as possible.
- If the number of columns of A is large, then the pricing step can be cumbersome.
- Partial pricing is the practice of only pricing out a small subset of possible columns.

Column Generation

- Notice that the problem max $\left\{c_{j}-y a_{j}\right\}$ is an optimization problem.
- Notice also that it is not necessary to have all the columns present in the matrix.
- Suppose the columns of the matrix have a special structure that allows us to generate them "automatically".
- We can sole the above optimization problem to determine the next column to be pivoted in.
- All we really need is the columns of the optimal basis.

Constraint Generation

- Consider an LP specified as follows

$$
\begin{array}{ll}
\min & c^{\mathrm{T}} x \\
\text { s.t. } & A x \leq b
\end{array}
$$

- In this case, we can sometimes have $m \gg n$.
- Constraints (rows) can also be automatically generated.
- This is called separation.

Deleting Columns and Rows

- If the slack variable for a particular row is basic, then that row is "inactive".
- Inactive rows can be deleted from the problem without changing the optimal solution.
- Similarly, there are methods of proving that a particular column can never be basic in an optimal solution.
- While solving large LP's by column and constraint generation, we can simultaneously purge ineffective rows and columns and generate new ones.
- This technique can be very effective.

Integer Linear Programs

Integer Linear Programs

- Now one more layer of complication. . . .
- Suppose that we have an LP in which some of the variables are constrained to be integer-valued.

$$
\begin{array}{ll}
\min & c^{\mathrm{T}} x \\
\text { s.t. } & A x=b \\
& x \geq 0 \\
& x \in \mathbf{Z}^{\mathrm{n}}
\end{array}
$$

- The Simplex Algorithm can't handle this.

LP-based Branch and Bound

- Basic Method
- Formulate and solve the LP relaxation.
- If the optimal solution is integral, STOP.
- Otherwise, branch on some fractional variable
- Iterate
- Notice that solving the LP serves a three-fold purpose
- Generates a lower bound
- Possibly generates a feasible solution
- Indicates how to branch

Example: Traveling Salesman Problem

