IE 495 Lecture 24

November 28, 2000

Reading for This Lecture

- Primary
- Bazaraa, Sherali, and Sheti, Chapter 2.
- Chvatal, Chapters 6 and 7.

Linear Programming

Introduction

- Consider again the system $A x=b, A \in \mathbf{R}^{m \times n}, b \in \mathbf{R}^{m}$.
- In this problem, there are either
- no solutions
- one solution
- infinitely many solutions (if $\mathrm{n}>\mathrm{m}$)
- The problem of linear programming is

$$
\begin{array}{ll}
\min & c^{\mathrm{T}} x \\
\text { s.t. } & A x=b \\
& x \geq 0
\end{array}
$$

Applications of Linear Programming

- Linear programming is central to much of operations research.
- Many resource allocation problems can be described as linear programs.
- Example: The Diet Problem
- We have a set of nutrients with RDAs.
- We have a set of available foods.
- We have preference constraints which limit the intake of particular foods.
- We want to minimize our cost.

Convex Sets

$$
\begin{gathered}
\text { A set } S \text { is convex } \\
\\
\stackrel{\Leftrightarrow}{x_{1}, x_{2} \in S, \lambda \in[0,1]} \Rightarrow \lambda x_{1}+(1-\lambda) x_{2} \in S
\end{gathered}
$$

- If $x=\Sigma \lambda_{i} x_{i}$, where $\lambda_{i} \geq 0$ and $\Sigma \lambda_{i}=1$, then x is a convex combination of the x_{i}^{\prime} 's.
- If the positivity restriction on $\boldsymbol{\lambda}$ is removed, then y is an affine combination of the $x_{i}^{\prime} \mathrm{s}$.
- If we further remove the restriction that $\Sigma \lambda_{i}=1$, then we have a linear combination.

Extreme Points and Directions

- If S is a convex set in $\mathbf{R}^{\mathrm{n}}, x \in S$ is an extreme point if it is not a non-trivial convex combination of two distinct members of S.
- A vector $d \in \mathbf{R}^{\mathrm{n}}$ is a feasible direction for S if for each x $\in S, \mathrm{x}+\lambda d \in S \forall \lambda \geq 0$
- Notice that this is equivalent to $A d=0, d \geq 0$.
- A vector $d \in \mathbf{R}^{\mathrm{n}}$ is an extreme direction of S if it is not a non-trivial convex combination of two distinct feasible directions.

Polyhedral sets

- A polyhedral set is the intersection of a finite number of closed half-spaces, i.e. $\left\{x \in \mathbf{R}^{\mathrm{n}}\right.$ s.t. $\left.A x \leq b\right\}$.
- Notice that polyhedral sets are convex.
- Also notice that $\left\{x \in \mathbf{R}^{\mathrm{n}}\right.$ s.t. $\left.A x=b, x \geq 0\right\}$ is polyhedral.
- Every element of a polyhedral set is the convex combination of extreme points plus positive scalar multiples of extreme directions.
- A convex set is bounded if the set of feasible directions is empty, i.e. if it is the convex hull of its extreme points.

Linear Programming and Convexity

- For the remainder of the lecture, we are given $A \in \mathbf{R}^{m \times n}$, $b \in \mathbf{R}^{m}$. Assume $S=\left\{x \in \mathbf{R}^{\mathrm{n}}\right.$ s.t. $\left.A x=b, x \geq 0\right\}$ is bounded.
- We want to solve the LP

$$
\begin{array}{ll}
\min & c^{\mathrm{T}} x \\
\text { s.t. } & A x=b \\
& x \geq 0
\end{array}
$$

- We need only consider extreme points (why?).

Characterization of Extreme Points

- Arrange the columns of A such that $A=[B, N]$, where B is a non-singular $n \times n$ matrix.
- Then x is an extreme point of S if and only if $x=\left[x_{B}, 0\right]$ where $x_{B}=B^{-1} b$ for some arrangement such that $B^{-1} b \geq 0$
- This implies that the number of extreme points is finite (but still potentially very large).

The Simplex Algorithm

- Note that $x_{B}=B^{-1} b-B^{-1} N x_{N}$
- Hence, $c^{\mathrm{T}} x=c_{B}{ }^{\mathrm{T}} x_{B}+c_{N}{ }^{\mathrm{T}} x_{N}=c_{B}{ }^{\mathrm{T}} B^{-l} b+\left(c_{N}{ }^{\mathrm{T}}-c_{B}{ }^{\mathrm{T}} B^{-l} N\right) x_{N}$
- So if $c_{N}{ }^{\mathrm{T}}-c_{B}{ }^{\mathrm{T}} B^{-l} N \geq 0$, we have found the optimal solution (why?).
- Otherwise, suppose some component of $c_{N}{ }^{\mathrm{T}}-c_{B}{ }^{\mathrm{T}} B^{-1} N$ is negative.
- Then we raise the value of the corresponding variable as much as possible while maintaining feasibility.

More Terminology

- The matrix \boldsymbol{B} is called the basis.
- The variables corresponding to the columns of \boldsymbol{B} are the basic variables.
- All other variables are called non-basic.
- The fundamental step the simplex algorithm is called a pivot.
- We add one basic variable and remove another.
- We do this in such a way that feasibility is maintained and the cost deceases at each step.

Summary of the Simplex Algorithm

- Simplex algorithm
- Compute $y B=c_{B}{ }^{\mathrm{T}}$
- Choose a column of a_{j} of N such $y a_{j}>c_{j}$
- Compute $B d=a_{j}$
- Find the largest t such that $x_{B}{ }^{*}-t d \geq 0$
- Set the value of x_{j} to t and the values of the basic variables to $x_{B}{ }^{*}-t d$.
- Update the basis.
- The only hard part is implementing the last step.

Implementing the Algorithm

- Let B_{k} be the basis after the $\mathrm{k}^{\text {th }}$ iteration.
- Note that $\mathrm{B}_{\mathrm{k}}=\mathrm{B}_{\mathrm{k}-1} \mathrm{E}_{\mathrm{k}}$ where
- E_{k} is the identity matrix with the $\mathrm{p}^{\text {th }}$ column replaced by $\mathrm{d}=\mathrm{B}_{\mathrm{k}-1}{ }^{-1} \mathrm{a}_{\mathrm{j}}$ (already computed).
- p is the "leaving column"
- So, we have $B_{k}=B_{0} E_{1} \ldots E_{k}=L U E_{1} \ldots . E_{k}$
- To update at each iteration, we merely append the next eta matrix to the list.
- Often, B_{0} is the identity matrix.

Refactorizing the Basis

- After many iterations, it can become inefficient to solve these systems.
- Periodically, throw away all the eta files and calculate a brand new LU factorization.
- How often should this be done?
- It depends on the matrix.
- Under some fairly reasonable assumptions, the "breakeven" point seems to be ≈ 15 iterations.

