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Reading for This Lecture

� Primary

� Bazaraa, Sherali, and Sheti, Chapter 2.

� Chvatal, Chapters 6 and 7.



Linear Programming



Introduction

� Consider again the system Ax = b, A ∈ Rm×n, b ∈ Rm.

� In this problem, there are either

� no solutions

� one solution

� infinitely many solutions (if n > m)

� The problem of linear programming is

min cTx
s.t. Ax = b

x  ≥ 0



Applications of Linear Programming

� Linear programming is central to much of operations 
research.

� Many resource allocation problems can be described as 
linear programs.

� Example: The Diet Problem

� We have a set of nutrients with RDAs.

� We have a set of available foods.

� We have preference constraints which limit the intake of 
particular foods.

� We want to minimize our cost.



Convex Sets

A set S is convex 
⇔ 

x
1
, x

2
 ∈ S, λ ∈ [0,1] ⇒ λx

1
 + (1 - λ)x

2
 ∈ S

� If x = Σλ
i
x

i
, where λ

i
 ≥ 0 and Σλ

i
  = 1, then x is a convex 

combination of the x
i
's.

� If the positivity restriction on λ is removed, then y is an 
affine combination of the x

i
's.

� If we further remove the restriction that Σλ
i
  = 1, then we 

have a linear combination.



Extreme Points and Directions

� If S is a convex set in Rn, x ∈ S is an extreme point if it is 
not a non-trivial convex combination of two distinct 
members of S.

� A vector d ∈Rn is a feasible direction for S if for each x 
∈ S, x + λd ∈ S ∀λ ≥ 0

� Notice that this is equivalent to Ad = 0, d ≥ 0.

� A vector d ∈Rn is an extreme direction of S if it is not a 
non-trivial convex combination of two distinct feasible 
directions.



Polyhedral sets

� A polyhedral set is the intersection of a finite number of 
closed half-spaces, i.e. {x ∈Rn s.t. Ax ≤ b}.

� Notice that polyhedral sets are convex.

� Also notice that {x ∈Rn s.t. Ax = b, x ≥ 0} is polyhedral.

� Every element of a polyhedral set is the convex 
combination of extreme points plus positive scalar 
multiples of extreme directions.

� A convex set is bounded if the set of feasible directions 
is empty, i.e. if it is the convex hull of its extreme points.



Linear Programming and Convexity

� For the remainder of the lecture, we are given A ∈ Rm×n, 
b ∈ Rm. Assume S = {x ∈Rn s.t. Ax = b, x ≥ 0} is 
bounded.

� We want to solve the LP

min cTx
s.t. Ax = b

x  ≥ 0

� We need only consider extreme points (why?).



Characterization of Extreme Points

� Arrange the columns of A such that A = [B, N], where B 
is a non-singular n×n matrix.

� Then x is an extreme point of S if and only if x = [x
B
, 0] 

where x
B
 = B-1b for some arrangement such that B-1b ≥ 0

� This implies that the number of extreme points is finite 
(but still potentially very large).



The Simplex Algorithm

� Note that x
B
 = B-1b - B-1Nx

N

� Hence, cTx = c
B

Tx
B 
+ c

N
Tx

N
 = c

B
TB-1b  + (c

N
T - c

B
TB-1N)x

N

� So if c
N

T - c
B

TB-1N ≥ 0, we have found the optimal 
solution (why?).

� Otherwise, suppose some component of c
N

T - c
B

TB-1N is 
negative.

� Then we raise the value of the corresponding variable as 
much as possible while maintaining feasibility.



More Terminology

� The matrix B is called the basis.

� The variables corresponding to the columns of B are the 
basic variables.

� All other variables are called non-basic.

� The fundamental step  the simplex algorithm is called a 
pivot.

� We add one basic variable and remove another.

� We do this in such a way that feasibility is maintained and the 
cost deceases at each step.



Summary of the Simplex Algorithm

� Simplex algorithm

� Compute yB = c
B

T

� Choose a column of a
j
 of N such ya

j
 > c

j

� Compute Bd = a
j

� Find the largest t such that x
B
* - td ≥ 0

� Set the value of x
j
 to t and the values of the basic variables to 

x
B
* - td.

� Update the basis.

� The only hard part is implementing the last step.



Implementing the Algorithm

� Let B
k
 be the basis after the kth iteration.

� Note that B
k
 = B

k-1
E

k
 where 

� Ek is the identity matrix with the pth column replaced by 
d = B

k-1
-1 a

j
 (already computed).

� p is the "leaving column"

� So, we have B
k
 = B

0
E

1
 .... E

k
 = LUE

1
 .... E

k

� To update at each iteration, we merely append the next 
eta matrix to the list.

� Often, B
0
 is the identity matrix.



Refactorizing the Basis

� After many iterations, it can become inefficient to solve 
these systems.

� Periodically, throw away all the eta files and calculate a 
brand new LU factorization.

� How often should this be done?

� It depends on the matrix.

� Under some fairly reasonable assumptions, the "break-
even" point seems to be ≈ 15 iterations.


