IE 495 Lecture 24

November 28, 2000

Reading for This Lecture

- Primary
 - Bazaraa, Sherali, and Sheti, Chapter 2.
 - Chvatal, Chapters 6 and 7.

Linear Programming

Introduction

- Consider again the system $Ax = b, A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^{m}$.
- In this problem, there are either
 - no solutions
 - one solution
 - infinitely many solutions (if n > m)
- The problem of *linear programming* is

 $\begin{array}{ll} \min & c^{\mathrm{T}}x\\ \mathrm{s.t.} & Ax = b\\ & x \ge 0 \end{array}$

Applications of Linear Programming

- Linear programming is central to much of operations research.
- Many resource allocation problems can be described as linear programs.
- Example: The Diet Problem
 - We have a set of nutrients with RDAs.
 - We have a set of available foods.
 - We have preference constraints which limit the intake of particular foods.
 - We want to minimize our cost.

Convex Sets

A set *S* is *convex* \Leftrightarrow

 $x_1, x_2 \in S, \lambda \in [0,1] \Rightarrow \lambda x_1 + (1 - \lambda) x_2 \in S$

- If $x = \sum \lambda_i x_i$, where $\lambda_i \ge 0$ and $\sum \lambda_i = 1$, then *x* is a *convex combination* of the x_i 's.
- If the positivity restriction on λ is removed, then y is an *affine combination* of the x_i 's.
- If we further remove the restriction that $\Sigma \lambda_i = 1$, then we have a *linear combination*.

Extreme Points and Directions

- If *S* is a convex set in \mathbb{R}^n , $x \in S$ is an *extreme point* if it is not a *non-trivial* convex combination of two distinct members of *S*.
- A vector $d \in \mathbb{R}^n$ is a feasible direction for *S* if for each $x \in S$, $x + \lambda d \in S \forall \lambda \ge 0$
- Notice that this is equivalent to $Ad = 0, d \ge 0$.
- A vector $d \in \mathbb{R}^n$ is an *extreme direction* of *S* if it is not a *non-trivial* convex combination of two distinct feasible directions.

Polyhedral sets

- A polyhedral set is the intersection of a finite number of closed half-spaces, i.e. $\{x \in \mathbb{R}^n \text{ s.t. } Ax \leq b\}$.
- Notice that polyhedral sets are convex.
- Also notice that $\{x \in \mathbb{R}^n \text{ s.t. } Ax = b, x \ge 0\}$ is polyhedral.
- Every element of a polyhedral set is the convex combination of extreme points plus positive scalar multiples of extreme directions.
- A convex set is *bounded* if the set of feasible directions is empty, i.e. if it is the *convex hull* of its extreme points.

Linear Programming and Convexity

- For the remainder of the lecture, we are given A ∈ ℝ^{m×n},
 b ∈ ℝ^m. Assume S = {x ∈ ℝⁿ s.t. Ax = b, x ≥ 0} is bounded.
- We want to solve the LP

 $\begin{array}{ll} \min & c^{\mathrm{T}}x\\ \mathrm{s.t.} & Ax = b\\ & x \ge 0 \end{array}$

• We need only consider extreme points (why?).

Characterization of Extreme Points

- Arrange the columns of *A* such that *A* = [*B*, *N*], where *B* is a non-singular *n*×*n* matrix.
- Then x is an extreme point of S if and only if $x = [x_B, 0]$ where $x_B = B^{-1}b$ for some arrangement such that $B^{-1}b \ge 0$
- This implies that the number of extreme points is finite (but still potentially very large).

The Simplex Algorithm

- Note that $x_B = B^{-1}b B^{-1}Nx_N$
- Hence, $c^{T}x = c_{B}^{T}x_{B} + c_{N}^{T}x_{N} = c_{B}^{T}B^{-1}b + (c_{N}^{T} c_{B}^{T}B^{-1}N)x_{N}$
- So if $c_N^{T} c_B^{T}B^{-1}N \ge 0$, we have found the optimal solution (why?).
- Otherwise, suppose some component of $c_N^{T} c_B^{T}B^{-1}N$ is negative.
- Then we raise the value of the corresponding variable as much as possible while maintaining feasibility.

More Terminology

- The matrix **B** is called the *basis*.
- The variables corresponding to the columns of *B* are the *basic* variables.
- All other variables are called *non-basic*.
- The fundamental step the simplex algorithm is called a *pivot*.
 - We add one basic variable and remove another.
 - We do this in such a way that feasibility is maintained and the cost deceases at each step.

Summary of the Simplex Algorithm

- Simplex algorithm
 - Compute $yB = c_B^{T}$
 - Choose a column of a_i of N such $ya_i > c_i$
 - Compute $Bd = a_j$
 - Find the largest t such that $x_B^* td \ge 0$
 - Set the value of x_j to *t* and the values of the basic variables to $x_B^* td$.
 - Update the basis.
- The only hard part is implementing the last step.

Implementing the Algorithm

- Let B_k be the basis after the kth iteration.
- Note that $B_k = B_{k-1}E_k$ where
 - E_k is the identity matrix with the pth column replaced by $d = B_{k-1}^{-1} a_j$ (already computed).
 - p is the "leaving column"
- So, we have $B_k = B_0 E_1 \dots E_k = LUE_1 \dots E_k$
- To update at each iteration, we merely append the next eta matrix to the list.
- Often, B_0 is the identity matrix.

Refactorizing the Basis

- After many iterations, it can become inefficient to solve these systems.
- Periodically, throw away all the eta files and calculate a brand new LU factorization.
- How often should this be done?
- It depends on the matrix.
- Under some fairly reasonable assumptions, the "breakeven" point seems to be ≈ 15 iterations.