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November 21, 2000



Reading for This Lecture

* Primary
— Miller and Boxer, Pages 128-134
- Forsythe and Mohler, Sections 9-13



Parallel Gaussian Elimination

* PRAM with n? processors

* Mesh with n? processors



Scaling

In the "bad" example from the last |ecture, what caused
the trouble?

Essentially, coefficients were too far apart in "scale".
Ex:10°+10°=10°if d= 5.
What can we do about this?



Diagonal Equivalence

Two matrices A and A" are diagonally equivalent if
- A'=D'AD,
- D, and D, are non-singular diagonal matrices

A’ isjust A with the columns and rows "scaled".

—or our purposes, the elements of D, and D, will be
powers of 10 (we assume this base).

Hence, this operation merely changes the exponent.
This operation does not change the "significands'.



Computing with Scaled Matrices

* Noticethat "diagonal equivalence" is an eguivalence
relation.

e Supposewe set b’ = D b (similarly scaled)

- If the same sequence of pivotsis used,
- The solutions to the these systems will have the same
significands:
« AX =l
* Ax=Db
* They will differ only in their exponents.



What isthe point?

We can now see that scaling only alters the choice of
pivot element.

However, we can use scaling to change the condition
number of the matrix.

The problem of finding a scaling the minimizes the
condition number of the system is difficult.

It has been solved for certain norms, but not L.



Another approach

A matrix is said to be row equilibrated if the maximum
entry in each row is between 10 and 1.

Column equilibrated is defined similarly.

A matrix isequilibrated if it is both row and column
equilibrated.

It is unknown how to "optimally" equilibrate a matrix.
There are heuristics for doing so approximately.
This seems to be a good approach.



Iterative Improvement

* |terative Procedure
- Solve Ax, = b.
- Compute theresidual r, = AX_ - b.
- Solvethesystem Az =r..
- Setx, = A(X, + 2).
 Notethat r. must be computed with more precision than
the rest of the computation.



Convergence of lterative
|mprovement

Theerrorinx isrelatedtor, by
e =X -Ab=AYAx -b)=-A'r_.

Hence, norm(e,) < norm(A*) [morm(r.).
Also, norm( r,) = 10" norm(A)orm( X,).
So finally, norm(e,) = 10"cond(A)morm(x,)
It cond(A) = 10°, norm(e,)/norm(x,) = 10"P.



Conseguences

With some care, we can assure that norm(z,)/norm(x,) =
norm(e )/norm(x,) = 10",

Hence, cond(A) = 10'norm(z,)/norm(x, ).

Furthermore, the number of iterations needed to compute
totdigtsof precisonist/(log,,(norm(z,)/norm(x,))).

If p=t, we're out of luck.



Sparsity

Sparse matrices allow faster calculation.

If Alssparse, we attempt to maintain that sparsity isthe
LU factorization.

Markowitz's Rule

- Let p, be the number of nonzerosin row i and ¢ the number of
nonzeros in column j.

- Pivot on the element a, such that (p, - 1)(qj - 1) iIsminimized.

Note that thisis at odds with pivoting rulesto limit
round-off error.



Another Procedure

* Notethat if A hasno nonzeros above the diagonal in
column |, then this pattern is carried into L and U.

* Hence, wetry to make A look as much like alower
diagonal matrix as possible through premutation.

e Thishas good resultsin practice, but also must be traded
off against round-off error.



A Word About Zero Tolerances

The number zero plays a central role in these issues.

Numbers that are very close to zero tend to cause
numerical difficulties.

Values that appear nonzero because of round-off, but
whose true value is zero are especially dangerous.

For this reason, practitioners usually use zero tolerances.

Thisisalimit below which avalue is taken to be exactly
ZEX0.

Usually, there are several different tolerances.
Choosing them is problematic.



Summary

Limiting round-off error is an inexact science.

There is some theory to guide us, but techniques based
on the theory don't always work.

Y ou have to know your problem!

Always remember the difference between conditioning
and stability!

Formulation can make a big difference to conditioning!!
Changing the algorithm can improve stability.



