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Reading for This Lecture

� Primary

� Miller and Boxer, Pages 128-134

� Forsythe and Mohler, Sections 9-13



Parallel Gaussian Elimination

� PRAM with n2 processors

� Mesh with n2 processors



Scaling

� In the "bad" example from the last lecture, what caused 
the trouble?

� Essentially, coefficients were too far apart in "scale".

� Ex: 105 + 10-5 = 105 if d = 5.

� What can we do about this?



Diagonal Equivalence

� Two matrices A and A′ are diagonally equivalent if

� A′ = D
1
-1AD

2

� D
1
 and D

2
 are non-singular diagonal matrices

� A′ is just A with the columns and rows "scaled".

� For our purposes, the elements of D
1
 and D

2
 will be 

powers of 10 (we assume this base).

� Hence, this operation merely changes the exponent.

� This operation does not change the "significands".



Computing with Scaled Matrices

� Notice that "diagonal equivalence" is an equivalence 
relation.

� Suppose we set b′ = D
1
b (similarly scaled)

� If the same sequence of pivots is used, 

� The solutions to the these systems will have the same 
significands:

�

A′x′ = b′

� Ax = b

� They will differ only in their exponents.



What is the point?

� We can now see that scaling only alters the choice of 
pivot element.

� However, we can use scaling to change the condition 
number of the matrix.

� The problem of finding a scaling the minimizes the 
condition number of the system is difficult.

� It has been solved for certain norms, but not L
2
.



Another approach

� A matrix is said to be row equilibrated if the maximum 
entry in each row is between 10-1 and 1.

� Column equilibrated is defined similarly.

� A matrix is equilibrated if it is both row and column 
equilibrated.

� It is unknown how to "optimally" equilibrate a matrix.

� There are heuristics for doing so approximately.

� This seems to be a good approach.



Iterative Improvement

� Iterative Procedure

� Solve Ax
1
 = b. 

� Compute the residual r
1
 = Ax

1
 - b.

� Solve the system Az
1
 = r

1
.

� Set x
2
 = A(x

1
 + z

1
).

� Note that r
i
 must be computed with more precision than 

the rest of the computation.



Convergence of Iterative 
Improvement

� The error in x
1
 is related to r

1
 by 

e
1
 = x

1
 - A-1b = A-1(Ax

1
 - b) = -A-1r

1
.

� Hence, norm(e
1
) ≤ norm(A-1) ⋅norm( r

1
).

� Also, norm( r
1
) ≈ 10-t norm(A)⋅norm( x

1
).

� So finally, norm(e
1
) ≈ 10-tcond(A)⋅norm(x

1
)

� If cond(A) ≈ 10p, norm(e
1
)/norm(x

1
) ≈ 10t-p.



Consequences

� With some care, we can assure that norm(z
1
)/norm(x

1
) ≈ 

norm(e
1
)/norm(x

1
) ≈ 10t-p.

� Hence, cond(A) ≈ 10tnorm(z
1
)/norm(x

1
).

� Furthermore, the number of iterations needed to compute 
to t digits of precision is t/(log

10
(norm(z

1
)/norm(x

1
))).

� If p ≥ t, we're out of luck.



Sparsity

� Sparse matrices allow faster calculation.

� If A is sparse, we attempt to maintain that sparsity is the 
LU factorization.

� Markowitz's Rule

� Let p
i
 be the number of nonzeros in row i and q

j
 the number of 

nonzeros in column j.

� Pivot on the element a
ij
 such that (p

i
 - 1)(q

j
 - 1) is minimized.

� Note that this is at odds with pivoting rules to limit 
round-off error.



Another Procedure

� Note that if A has no nonzeros above the diagonal in 
column j, then this pattern is carried into L and U.

� Hence, we try to make A look as much like a lower 
diagonal matrix as possible through premutation.

� This has good results in practice, but also must be traded 
off against round-off error.



A Word About Zero Tolerances

� The number zero plays a central role in these issues.

� Numbers that are very close to zero tend to cause 
numerical difficulties.

� Values that appear nonzero because of round-off, but 
whose true value is zero are especially dangerous.

� For this reason, practitioners usually use zero tolerances.

� This is a limit below which a value is taken to be exactly 
zero.

� Usually, there are several different tolerances.

� Choosing them is problematic.



Summary

� Limiting round-off error is an inexact science.

� There is some theory to guide us, but techniques based 
on the theory don't always work.

� You have to know your problem!

� Always remember the difference between conditioning 
and stability!

� Formulation can make a big difference to conditioning!!

� Changing the algorithm can improve stability.


