IE 495 Lecture 23

November 21, 2000

Reading for This Lecture

- Primary
- Miller and Boxer, Pages 128-134
- Forsythe and Mohler, Sections 9-13

Parallel Gaussian Elimination

- PRAM with n^{2} processors
- Mesh with n^{2} processors

Scaling

- In the "bad" example from the last lecture, what caused the trouble?
- Essentially, coefficients were too far apart in "scale".
- Ex: $10^{5}+10^{-5}=10^{5}$ if $d=5$.
- What can we do about this?

Diagonal Equivalence

- Two matrices A and A^{\prime} are diagonally equivalent if
- $A^{\prime}=D_{1}^{-1} A D_{2}$
- D_{1} and D_{2} are non-singular diagonal matrices
- A^{\prime} is just A with the columns and rows "scaled".
- For our purposes, the elements of D_{1} and D_{2} will be powers of 10 (we assume this base).
- Hence, this operation merely changes the exponent.
- This operation does not change the "significands".

Computing with Scaled Matrices

- Notice that "diagonal equivalence" is an equivalence relation.
- Suppose we set $b^{\prime}=D_{l} b$ (similarly scaled)
- If the same sequence of pivots is used,
- The solutions to the these systems will have the same significands:
- $\mathrm{A}^{\prime} \mathrm{x}^{\prime}=\mathrm{b}^{\prime}$
- $A x=b$
- They will differ only in their exponents.

What is the point?

- We can now see that scaling only alters the choice of pivot element.
- However, we can use scaling to change the condition number of the matrix.
- The problem of finding a scaling the minimizes the condition number of the system is difficult.
- It has been solved for certain norms, but not L_{2}.

Another approach

- A matrix is said to be row equilibrated if the maximum entry in each row is between 10^{-1} and 1.
- Column equilibrated is defined similarly.
- A matrix is equilibrated if it is both row and column equilibrated.
- It is unknown how to "optimally" equilibrate a matrix.
- There are heuristics for doing so approximately.
- This seems to be a good approach.

Iterative Improvement

- Iterative Procedure
- Solve $A x_{1}=b$.
- Compute the residual $r_{1}=A x_{1}-b$.
- Solve the system $A z_{1}=r_{1}$.
- Set $x_{2}=A\left(x_{1}+z_{1}\right)$.
- Note that r_{i} must be computed with more precision than the rest of the computation.

Convergence of Iterative Improvement

- The error in x_{1} is related to r_{1} by

$$
e_{1}=x_{1}-A^{-1} b=A^{-1}\left(A x_{1}-b\right)=-A^{-1} r_{1} .
$$

- Hence, $\operatorname{norm}\left(e_{1}\right) \leq \operatorname{norm}\left(A^{-1}\right) \cdot \operatorname{norm}\left(r_{1}\right)$.
- Also, $\operatorname{norm}\left(r_{1}\right) \approx 10^{-t} \operatorname{norm}(A) \cdot \operatorname{norm}\left(x_{1}\right)$.
- So finally, $\operatorname{norm}\left(e_{1}\right) \approx 10^{-t} \operatorname{cond}(A) \cdot \operatorname{norm}\left(x_{1}\right)$
- If $\operatorname{cond}(A) \approx 10^{p}, \operatorname{norm}\left(e_{1}\right) / \operatorname{norm}\left(x_{1}\right) \approx 10^{t-p}$.

Consequences

- With some care, we can assure that $\operatorname{norm}\left(z_{1}\right) / \operatorname{norm}\left(x_{1}\right) \approx$ $\operatorname{norm}\left(e_{1}\right) / \operatorname{norm}\left(x_{1}\right) \approx 10^{t-p}$.
- Hence, $\operatorname{cond}(A) \approx 10^{t} \operatorname{norm}\left(z_{1}\right) / \operatorname{norm}\left(x_{1}\right)$.
- Furthermore, the number of iterations needed to compute to t digits of precision is $t /\left(\log _{10}\left(\operatorname{norm}\left(z_{1}\right) / \operatorname{norm}\left(x_{1}\right)\right)\right)$.
- If $p \geq t$, we're out of luck.

Sparsity

- Sparse matrices allow faster calculation.
- If A is sparse, we attempt to maintain that sparsity is the LU factorization.
- Markowitz's Rule
- Let p_{i} be the number of nonzeros in row i and q_{j} the number of nonzeros in column j.
- Pivot on the element $a_{i j}$ such that $\left(p_{i}-1\right)\left(q_{j}-1\right)$ is minimized.
- Note that this is at odds with pivoting rules to limit round-off error.

Another Procedure

- Note that if A has no nonzeros above the diagonal in column j , then this pattern is carried into L and U.
- Hence, we try to make A look as much like a lower diagonal matrix as possible through premutation.
- This has good results in practice, but also must be traded off against round-off error.

A Word About Zero Tolerances

- The number zero plays a central role in these issues.
- Numbers that are very close to zero tend to cause numerical difficulties.
- Values that appear nonzero because of round-off, but whose true value is zero are especially dangerous.
- For this reason, practitioners usually use zero tolerances.
- This is a limit below which a value is taken to be exactly zero.
- Usually, there are several different tolerances.
- Choosing them is problematic.

Summary

- Limiting round-off error is an inexact science.
- There is some theory to guide us, but techniques based on the theory don't always work.
- You have to know your problem!
- Always remember the difference between conditioning and stability!
- Formulation can make a big difference to conditioning!!
- Changing the algorithm can improve stability.

