IE 495 Lecture 22

November 16, 2000

Reading for This Lecture

- Primary
- Miller and Boxer, Pages 128-134
- Forsythe and Mohler, Sections 9 and 10

Solving Systems of Equations

- Problem: Given a matrix $A \in \mathbf{R}^{n \times n}$ and a vector $b \in \boldsymbol{R}^{n}$, we wish to find $x \in \mathbf{R}^{n}$ such that $A x=b$.
- Diagonal form of a matrix
- An othogonal matrix U has the property the $U^{\mathrm{T}} U=U U^{\mathrm{T}}=\mathrm{I}$.
- Given $A \in \mathbf{R}^{n \times n}$, there exist orthogonal matrices U, V such that
- $U^{\mathrm{T}} A V=D$ where D is a diagonal matrix where
- diagonal elements of D are $\mu_{1} \geq \mu_{2} \geq \cdots \geq \mu_{\mathrm{r}}>\mu_{\mathrm{r}+1}=\cdots=\mu_{\mathrm{n}}=0$, and
- r is the rank of A.
- μ_{i} is the non-negative square root of the $i^{\text {ih }}$ eigenvalue.
- This is called the singular value decomposition.

Importance of the SVD

Effect of multiplying by a matrix

Implications

- Multiplying by A represents a rotation and a scaling of axes to get from one space to the other.
- μ_{i} is the non-negative square root of the $i^{\text {th }}$ eigenvalue.
- Notice that $\|A\|=\|D\|=\mu_{1}$.
- So the norm of A is the maximum amount any axis gets magnified by A.
- If $r=n$, then we can easily derive the inverse of A.
- Also, $\left\|A^{-1}\right\|=\|A\|^{-1}=1 / \mu_{\mathrm{n}}$.

Condition of a Linear System

- Consider the problem of solving $A x=b$.
- If we perturb b, how much does the x change?
- $x+\delta x=A^{-1}(b+\delta b) \Rightarrow \delta x=A^{-1} \delta b$
- $\|\delta x\| \leq\left\|A^{-1}\right\| \cdot\|\delta b\|$
- $\|\delta x\| \cdot\|b\| \leq\|A\| \cdot\left\|A^{-1}\right\| \cdot\|x\| \cdot\|\delta b\|$
- $\|\delta x\| /\|x\| \leq\|A\| \cdot\left\|A^{-1}\right\| \cdot(\|\delta b\| /\|b\|)$
- The condition number of a matrix is the quantity $\operatorname{cond}(A)=\|A\| \cdot\left\|A^{-1}\right\|$

Condition Number

- Note that $\operatorname{cond}(A)=\mu_{1} / \mu_{\mathrm{n}}$.
- Hence it is a relative measure of how much distortion A causes to its input.
- It is also a measure of how much the inaccuracies in b get multiplied in x when solving systems $A x=b$.
- If b is the result of a previous calculation, then $\|\delta b\| /\|b\|$ is at best equal to u (machine epsilon).
- The inaccuracies in x will then be at best $u \cdot \operatorname{cond}(A)$.

Interpretation

- Orthogonal matrices have a norm of 1 and hence don't cause any scaling or distortion.
- Singular matrices have at least one singular value equal to 0 and hence have a norm of "infinity".
- "Nearly singular" matrices are the ones that cause problems.
- These are ones that have singular values "relatively close" to zero.

Gaussian Elimination

- Standard row operations
- Interchange rows
- Multiply rows by a scalar
- Subtract a multiple of row j from row i
- Standard algorithm
- Elimination Phase
- Bacl-substitution Phase

Gaussian Elimination

- Elimination Phase
- For $i=1$ to n
- Exchange row i with row $j>i$ to ensure $A_{i i} \neq 0$ (if not possible, STOP).
- Scale row i so that $A_{i i}=1$
- $\operatorname{For} j=i+1$ to n
- Subtract $A_{i j}$ times row i from row j so that $A_{i j}=0$
- Back Substitution Phase
- For $i=n$ to 1
- For $j=i-1$ to 1
- Subtract $A_{i j}$ times row i from row j so that $A_{i j}=0$

The LU Factorization

- The $L U$ decomposition
- Assume $\operatorname{det}\left(A_{k}\right) \neq 0 \forall \mathrm{k}$
- \exists a lower triangular matrix L with 1's on the diagonal, and
- an upper triangular matrix U such that
- $A=L U$
- With an $L U$ factorization, can solve the system $A x=b$
- Solve $L y=b$ (elimination phase)
- Solve $U x=y$ (back substitution phase)
- Hence, we see the relationship to Gaussian Elimination.

Calculating an LU Factorization

- The LU factorization can be computed "in-place" (sort of).
- Row interchanges can be represented by permutation matrices.
- Elimination operations can be represented by eta matrices.
- The eta matrices can be stored compactly as elimination proceeds.
- In the end, you have an $L U$ decomposition.

Solving with Multiple RHS's

- Suppose we wish to solve the system $\mathrm{Ax}=\mathrm{b}$ with multiple RHS vectors.
- Calculate an LU factorization.
- Use it to solve the system with various RHS's.
- Avoid computing A^{-1}
- Takes more computation (takes longer)
- More round-off error
- Usually completely dense

More On Row Interchanges

- Bad Example
- Partial Pivoting Strategy
- Take the pivot element to be the largest element (in absolute value) in the column
- Complete Pivoting Strategy
- Take the pivot element to be the largest element (in absolute value) in the whole matrix
- Using these strategies, we can limit round-off error
- Roughly, we will obtain x such that $(\mathrm{A}+\delta \mathrm{A}) \mathrm{x}=\mathrm{b}$ and the entries of $\delta \mathrm{A}$ are $\mathrm{O}(\mathrm{nu})$.

Parallel Gaussian Elimination

- PRAM with n^{2} processors
- Mesh with n^{2} processors

