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Reading for This Lecture

� Primary

� Miller and Boxer, Pages 128-134

� Forsythe and Mohler, Sections 9 and 10



Solving Systems of Equations

� Problem: Given a matrix A ∈ Rn × n and a vector b ∈ Rn, 
we wish to find x ∈ Rn such that Ax = b.

� Diagonal form of a matrix

� An othogonal matrix U has the property the UTU = UUT = I.

� Given A ∈ Rn × n, there exist orthogonal matrices U, V such that 

� UTAV = D where D is a diagonal matrix where

� diagonal elements of D are µ
1 
≥ µ

2 
≥ �  ≥ µ

r > µ
r+1

 = �� µ
n
 = 0, and

� r is the rank of A.

� µ
i 
is the non-negative square root of the ith eigenvalue.

� This is called the singular value decomposition.



Importance of the SVD

Effect of multiplying by a matrix



Implications

� Multiplying by A represents a rotation and a scaling of 
axes to get from one space to the other.

� µ
i
 is the non-negative square root of the ith eigenvalue. 

� Notice that 

�

A

�

 = 

�

D

�

 = µ1.

� So the norm of A is the maximum amount any axis gets 
magnified by A.

� If r = n, then we can easily derive the inverse of A.

� Also, 

�

A-1

�

 = 

�

A

�

-1 =  1/µ
n
.



Condition of a Linear System

� Consider the problem of solving Ax = b.

� If we perturb b, how much does the x change?

� x + δx= A-1(b + δb) ⇒ δx = A-1δb 

�

�

δx

�

≤

�

A-1

�

�

�

δb

�

�

�

δx

�

�

�

b

�

≤ 

�

A

�

�

�

A-1

�

�

�

x
�

�

�
δb

�

�

�

δx

�� �

x

�

≤ 

�

A

�

�

�

A-1

��

�

�

δb

�� �

b

��

� The condition number of a matrix is the quantity
cond(A) = 

�

A

�

�

�

A-1
�



Condition Number

� Note that cond(A) = µ1/µn
.

� Hence it is a relative measure of how much distortion A 
causes to its input.

� It is also a measure of how much the inaccuracies in b 
get multiplied in x when solving systems Ax = b.

� If b is the result of a previous calculation, then 

�

δb

�� �

b

�

is at best equal to u (machine epsilon).

� The inaccuracies in x will then be at best u � cond(A).



Interpretation

� Orthogonal matrices have a norm of 1 and hence don't 
cause any scaling or distortion.

� Singular matrices have at least one singular value equal 
to 0 and hence have a norm of "infinity".

� "Nearly singular" matrices are the ones that cause 
problems. 

� These are ones that have singular values "relatively 
close" to zero.



Gaussian Elimination

� Standard row operations

� Interchange rows

� Multiply rows by a scalar

� Subtract a multiple of row j from row i

� Standard algorithm

� Elimination Phase

� Bacl-substitution Phase



Gaussian Elimination

� Elimination Phase

� For i = 1 to n

� Exchange row i with row j > i to ensure A
ii
 ≠ 0 (if not possible, STOP).

� Scale row i so that A
ii
 = 1

� For j = i+1 to n

� Subtract A
ij
 times row i from row j so that A

ij
 = 0

� Back Substitution Phase

� For i = n to 1

� For j = i-1 to 1

� Subtract A
ij
 times row i from row j so that A

ij
 = 0



The LU Factorization

� The LU decomposition

� Assume det(A
k
) ≠ 0 ∀k

� ∃ a lower triangular matrix L with 1's on the diagonal, and

� an upper triangular matrix U such that 

� A = LU

� With an LU factorization, can solve the system Ax = b

� Solve Ly = b (elimination phase)

� Solve Ux = y (back substitution phase)

� Hence, we see the relationship to Gaussian Elimination.



Calculating an LU Factorization

� The LU factorization can be computed "in-place" (sort 
of).

� Row interchanges can be represented by permutation 
matrices.

� Elimination operations can be represented by eta 
matrices.

� The eta matrices can be stored compactly as elimination 
proceeds. 

� In the end, you have an LU decomposition.



Solving with Multiple RHS's

� Suppose we wish to solve the system Ax = b with 
multiple RHS vectors.

� Calculate an LU factorization.

� Use it to solve the system with various RHS's.

� Avoid computing A-1

� Takes more computation (takes longer)

� More round-off error

� Usually completely dense



More On Row Interchanges

� Bad Example

� Partial Pivoting Strategy

� Take the pivot element to be the largest element (in absolute 
value) in the column

� Complete Pivoting Strategy

� Take the pivot element to be the largest element (in absolute 
value) in the whole matrix

� Using these strategies, we can limit round-off error

� Roughly, we will obtain x such that (A + δA)x = b and 
the entries of δA are O(nu).



Parallel Gaussian Elimination

� PRAM with n2 processors

� Mesh with n2 processors


