IE 495 Lecture 21

November 14, 2000

Reading for This Lecture

- Primary
 - Miller and Boxer, Pages 124-128
 - Forsythe and Mohler, Sections 1 to 8

Matrix Multiplication

- The standard sequential algorithm for multiplying matrices is $O(n^3)$.
- Strassen's Algorithm is a divide and conquer approach.
- Analysis of Strassen's Algorithm
 - $T(n) = 7T(n/2) + dn^2$
 - $T(n) = O(n^{\log(7)}) = O(n^{2.81...})$
- Every algorithm must be $\Omega(n^2)$.
- The best known algorithm to date is $O(n^{2.376...})$.
- Can we parallelize Strassen's Algorithm?

Parallel Matrix Multiplication

- Assume a CREW shared-memory architecture with n³ processors.
- Label processors as P_{111} through P_{nnn} .
- Processor \mathbf{P}_{ijk} calculates $a_{ik} \cdot b_{kj}$.
- The remaining sums can be computed in *O*(*log n*) using a semigroup operation.
- The running time is $O(\log n)$.
- Cost optimality?

Matrix Multiplication on a Mesh

- Assume a $2n \times 2n$ mesh computer.
- Assume each processor initially stores one entry.
- Algorithm

• Analysis

• Optimality

Real Vector Spaces

- A real vector space is a set \mathcal{V} , along with
 - an addition operation that is commutative and associative.
 - an element $0 \in V$ such that a + 0 = a, $\forall a \in \mathcal{V}$.
 - an additive inverse operation such that $\forall a \in V, \exists a' \in \mathcal{V}$ such that a + a' = 0.
 - a scalar multiplication operation such that $\forall \lambda, \mu \in \mathbf{R}, a, b \in \mathcal{V}$
 - $\lambda(a+b) = \lambda a + \lambda b$
 - $(\lambda + \mu)a = \lambda a + \mu a$
 - $\lambda(\mu a) = (\lambda \mu)a$
 - 1a = a

Norms on Vector Spaces

- A norm on a vector space is a function $\|\cdot\|: \mathcal{V} \to \mathbf{R}$ satisfying
 - $\|v\| \ge 0 \ \forall v \in \mathcal{V}$
 - ||v|| = 0 if and only if v = 0
 - $\|v + w\| \leq \|v\| + \|w\| \quad \forall v, w \in \mathcal{V}$
 - $\|\lambda v\| = |\lambda| \cdot \|v\|$
- Norms are used for measuring the "size" of an object or the "distance" between two objects in a vector space.
- These are the normal properties you would expect such a measure to have.

Examples of Vector Spaces

- **R**^{*n*}
- **Z**^{*n*}
- $\mathbf{R}^{n \times n}$
- { $y \in \mathbf{R}^m$: $Ax = y, \exists x \in \mathbf{R}^n$ }

Matrix and Vector Norms

- Unless otherwise indicated, we will use the L_2 norm for vectors and the corresponding norm for matrices.
- We will denote this by $\|\cdot\|$.
- Note the following definitions and properties
 - $|x^T y| \le ||\mathbf{x}|| \cdot ||\mathbf{y}||$
 - $||A|| = \max \{ ||Ax||/||x||, x \neq 0 \}$
 - $||Ax|| \leq ||A|| \cdot ||x||$
 - $\|AB\| \leq \|A\| \cdot \|B\|$

Solving Systems of Equations

- <u>Problem</u>: Given a matrix $A \in \mathbb{R}^{n \times n}$ and a vector $b \in \mathbb{R}^{n}$, we wish to find $x \in \mathbb{R}^{n}$ such that Ax = b.
- Diagonal form of a matrix
 - An othogonal matrix U has the property the $U^{T}U = UU^{T} = I$.
 - Given $A \in \mathbb{R}^{n \times n}$, there exist orthogonal matrices *U*, *V* such that
 - $U^{T}AV = D$ where D is a diagonal matrix where
 - diagonal elements of *D* are $\mu_1 \ge \mu_2 \ge \cdots \ge \mu_r > \mu_{r+1} = \cdots = \mu_n = 0$, and
 - *r* is the rank of *A*.
 - μ_i is the non-negative square root of the *i*th eigenvalue.
 - This is called the singular value decomposition.

Importance of the SVD

Effect of multiplying by a matrix

Implications

- Multiplying by *A* represents a *rotation* and a *scaling* of axes to get from one space to the other.
- μ_i is the non-negative square root of the *i*th eigenvalue.
- Notice that $||A|| = ||D|| = \mu_1$.
- So the norm of *A* is the maximum amount any axis gets magnified by *A*.
- If r = n, then we can easily derive the inverse of *A*.
- Also, $||A^{-1}|| = ||A||^{-1} = 1/\mu_n$.