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Reading for This Lecture

� Primary

� Miller and Boxer, Pages 124-128

� Forsythe and Mohler, Sections 1 to 8



Matrix Multiplication

� The standard sequential algorithm for multiplying 
matrices is O(n3).

� Strassen's Algorithm is a divide and conquer approach.

� Analysis of Strassen's Algorithm

� T(n) = 7T(n/2) + dn2

� T(n) = O(nlog(7)) = O(n2.81...)

� Every algorithm must be Ω(n2).

� The best known algorithm to date is O(n2.376...).

� Can we parallelize Strassen's Algorithm?



Parallel Matrix Multiplication

� Assume a CREW shared-memory architecture with n3 
processors.

� Label processors as P
111

 through P
nnn

.

� Processor P
ijk

 calculates a
ik
⋅b

kj
.

� The remaining sums can be computed in O(log n) using 
a semigroup operation.

� The running time is O(log n).

� Cost optimality?



Matrix Multiplication on a Mesh

� Assume a 2n × 2n mesh computer. 

� Assume each processor initially stores one entry.

� Algorithm

� Analysis

� Optimality



Real Vector Spaces

� A real vector space is a set V, along with

� an addition operation that is commutative and associative.

� an element 0 ∈ V such that a + 0 = a, ∀a ∈ V.

� an additive inverse operation such that  ∀a ∈ V, ∃a′ ∈ V such 
that  a + a′= 0.

� a scalar multiplication operation such that ∀λ, µ ∈ R, a, b ∈ V

� λ(a + b) = λa + λb

� (λ + µ)a = λa + µa

� λ(µa) = (λµ)a

� 1a = a



Norms on Vector Spaces

� A norm on a vector space is a function 
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� Norms are used for measuring the "size" of an object or 
the "distance" between two objects in a vector space.

� These are the normal properties you would expect such a 
measure to have.



Examples of Vector Spaces

� Rn

� Zn

� Rn × n

� {y ∈ Rm: Ax = y, ∃x ∈ Rn}



Matrix and Vector Norms

� Unless otherwise indicated, we will use the L
2
 norm for 

vectors and the corresponding norm for matrices.

� We will denote this by 

�
�

�

.

� Note the following definitions and properties
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Solving Systems of Equations

� Problem: Given a matrix A ∈ Rn × n and a vector b ∈ Rn, 
we wish to find x ∈ Rn such that Ax = b.

� Diagonal form of a matrix

� An othogonal matrix U has the property the UTU = UUT = I.

� Given A ∈ Rn × n, there exist orthogonal matrices U, V such that 

� UTAV = D where D is a diagonal matrix where

� diagonal elements of D are µ
1 
≥ µ

2 
≥ �  ≥ µ

r > µ
r+1

 = �� µ
n
 = 0, and

� r is the rank of A.

� µ
i 
is the non-negative square root of the ith eigenvalue.

� This is called the singular value decomposition.



Importance of the SVD

Effect of multiplying by a matrix



Implications

� Multiplying by A represents a rotation and a scaling of 
axes to get from one space to the other.

� µ
i
 is the non-negative square root of the ith eigenvalue. 

� Notice that 

�

A

�

 = 

�

D

�

 = µ1.

� So the norm of A is the maximum amount any axis gets 
magnified by A.

� If r = n, then we can easily derive the inverse of A.

� Also, 

�

A-1

�

 = 

�

A

�

-1 =  1/µ
n
.


