IE 495 Lecture 21

November 14, 2000

Reading for This Lecture

- Primary
- Miller and Boxer, Pages 124-128
- Forsythe and Mohler, Sections 1 to 8

Matrix Multiplication

- The standard sequential algorithm for multiplying matrices is $O\left(n^{3}\right)$.
- Strassen's Algorithm is a divide and conquer approach.
- Analysis of Strassen's Algorithm
$-\mathrm{T}(n)=7 \mathrm{~T}(n / 2)+d n^{2}$
- $\mathrm{T}(n)=\mathrm{O}\left(n^{\log (7)}\right)=\mathrm{O}\left(n^{2.81 . .}\right)$
- Every algorithm must be $\Omega\left(n^{2}\right)$.
- The best known algorithm to date is $\mathrm{O}\left(n^{2.376 \ldots}\right)$.
- Can we parallelize Strassen's Algorithm?

Parallel Matrix Multiplication

- Assume a CREW shared-memory architecture with n^{3} processors.
- Label processors as P_{111} through $\mathrm{P}_{n n n}$.
- Processor $\mathrm{P}_{i j k}$ calculates $a_{i k} \cdot b_{k j}$
- The remaining sums can be computed in $O(\log n)$ using a semigroup operation.
- The running time is $\boldsymbol{O}(\log n)$.
- Cost optimality?

Matrix Multiplication on a Mesh

- Assume a $2 n \times 2 n$ mesh computer.
- Assume each processor initially stores one entry.
- Algorithm
- Analysis
- Optimality

Real Vector Spaces

- A real vector space is a set \mathcal{V}, along with
- an addition operation that is commutative and associative.
- an element $0 \in V$ such that $a+0=a, \forall a \in \mathcal{V}$.
- an additive inverse operation such that $\forall a \in V, \exists a^{\prime} \in \mathcal{V}$ such that $a+a^{\prime}=0$.
- a scalar multiplication operation such that $\forall \lambda, \mu \in \mathbf{R}, a, b \in \mathcal{V}$
- $\lambda(a+b)=\lambda a+\lambda b$
- $(\lambda+\mu) a=\lambda a+\mu a$
- $\lambda(\mu \mathrm{a})=(\lambda \mu) \mathrm{a}$
- $1 \mathrm{a}=\mathrm{a}$

Norms on Vector Spaces

- A norm on a vector space is a function $\|\cdot\|: \mathcal{V} \rightarrow \mathbb{R}$ satisfying

$$
\begin{aligned}
& \text { - }\|v\| \geqslant 0 \forall v \in \mathcal{V} \\
& \text { - }\|v\|=0 \text { if and only if } v=0 \\
& \text { - }\|v+w\| \leq\|v\|+\|w\| \quad \forall v, w \in \mathcal{v} \\
& \text { - }\|\lambda v\|=|\lambda| \cdot\|v\|
\end{aligned}
$$

- Norms are used for measuring the "size" of an object or the "distance" between two objects in a vector space.
- These are the normal properties you would expect such a measure to have.

Examples of Vector Spaces

- \mathbb{R}^{n}
- \mathbb{Z}^{n}
- $\mathbb{R}^{n \times n}$
- $\left\{y \in \mathbb{R}^{m}: A x=y, \exists x \in \mathbb{R}^{n}\right\}$

Matrix and Vector Norms

- Unless otherwise indicated, we will use the L_{2} norm for vectors and the corresponding norm for matrices.
- We will denote this by $\|\cdot\|$.
- Note the following definitions and properties
- $\left|x^{T} y\right| \leq\|x\| \cdot\|y\|$
- $\|A\|=\max \{\|A x\| /\|x\|, \mathrm{x} \neq 0\}$
- $\|A x\| \leq\|A\| \cdot\|x\|$
- $\|A B\| \leq\|A\| \cdot\|B\|$

Solving Systems of Equations

- Problem: Given a matrix $A \in \mathbf{R}^{n \times n}$ and a vector $b \in \boldsymbol{R}^{n}$, we wish to find $x \in \mathbf{R}^{n}$ such that $A x=b$.
- Diagonal form of a matrix
- An othogonal matrix U has the property the $U^{\mathrm{T}} U=U U^{\mathrm{T}}=\mathrm{I}$.
- Given $A \in \mathbf{R}^{n \times n}$, there exist orthogonal matrices U, V such that
- $U^{\mathrm{T}} A V=D$ where D is a diagonal matrix where
- diagonal elements of D are $\mu_{1} \geq \mu_{2} \geq \cdots \geq \mu_{\mathrm{r}}>\mu_{\mathrm{r}+1}=\cdots=\mu_{\mathrm{n}}=0$, and
- r is the rank of A.
- μ_{i} is the non-negative square root of the $i^{\text {ih }}$ eigenvalue.
- This is called the singular value decomposition.

Importance of the SVD

Effect of multiplying by a matrix

Implications

- Multiplying by A represents a rotation and a scaling of axes to get from one space to the other.
- μ_{i} is the non-negative square root of the $i^{\text {th }}$ eigenvalue.
- Notice that $\|A\|=\|D\|=\mu_{1}$.
- So the norm of A is the maximum amount any axis gets magnified by A.
- If $r=n$, then we can easily derive the inverse of A.
- Also, $\left\|A^{-1}\right\|=\|A\|^{-1}=1 / \mu_{\mathrm{n}}$.

