
IE 495 Lecture 20

November 9, 2000

Reading for This Lecture

� Primary

� Miller and Boxer, Pages 124-128

� Forsythe and Mohler, Sections 1 and 2

Numerical Algorithms

Numerical Analysis

� So far, we have looked primarily at algorithms for
discrete problems.

� Now we will consider problems from continuous
mathematics.

� Numerical analysis is the study of algorithms for these
problems.

� The main difference between the two areas is that in
continuous mathematics, numbers must be approximated
in general.

Problems and Algorithms

� A problem is a map from f: X → Y, where X and Y are
normed vector spaces.

� A numerical algorithm is a procedure which calculates
F(x)

�

 Y, an approximation of f(x).

� A numerical algorithm does not necessatily have to be
finite.

� Some algorithms converge (hopefully quickly) to the
true solution "in the limit".

Conditioning

� A problem is well-conditioned if x′ ≈ x ⇒ f(x′) ≈ f(x).

� Otherwise, it is ill-conditioned.

� Notice that well-conditioned requires all small
perturbations to have a small effect.

� Ill-conditioned only requires some small perturbation to
have a large effect.

� Condition number of a problem

� Absolute

� Relative

Stability

� An algorithm is stable if F(x) ≈ f(x′) for some x′ ≈ x.

� This says that a stable algorithm conputes "nearly the
right answer" to "nearly the right question".

� Notice the contrast between conditioning and stability:

� Conditioning applies to problems.

� Stability applies to algorithms.

Accuracy

� Stability plus good conditioning implies accuracy.

� If a stable algorithm is applied to a well-conditioned
problem, then F(x) ≈ f(x).

� Conversely, if a problem is ill-conditioned, an accurate
solution may not be possible or even meaningful.

� We cannot ask more of an algorithm than stability.

Examples

� Addition, subtraction, multiplication, division.

� Addition, multiplication, division with positive numbers are
well-conditioned problems.

� Subtraction is not.

� Zeros of a quadratic equation

� The problem of computing the two roots is well-conditioned.

� However, the quadratic formula is not a stable algorithm.

� Solving systems of linear equations Ax = b.

� Conditioning depends on the matrix A.

Floating-point Arithmetic

� The floating-point numbers F are a subset of the real
numbers.

� For a real number x, let fl(x) ∈ F denote the floating
point approximation to x.

� Let

�

 and � represent the four floating point and exact
arithmetic operations.

� Typically, there is a number u << 1 called machine
epsilon, such that

� fl(x) = x(1 + ε) for some ε with | ε | ≤ u.

� ∀a, b ∈ F, a

�

 b = (a � b)(1 + ε) for some ε with | ε | ≤ u.

Stability of Floating Point Arithmetic

� Floating point arithmetic is stable for computing sums,
products, quotients, and differences of two numbers.

� Sequences of these operations can be unstable however.

� Example

� Assume 10 digit precision

� (10-10 + 1) - 1 = 0

� 10-10 + (1 - 1) = 10-10

� Floating point operations are not always associative.

More Bad Example

� Calculating e-a with a > 0 by Taylor Series.

� The round-off error is approximately u times the largest partial
sum.

� Calculating ea and then taking its inverse gives a full-precision
answer

� Roots of a quadratic (ax2 + bx + c)

� If x
1
 ≈ 0 and x

2
 >> 0, then the quadratic formula is unstable.

� Computing x
2
 by the quadratic formula and then setting x

1
 =

cx
2
/ a is stable.

Backward Error Analysis

� Backward error analysis is a method of analyzing round-
off error and assessing stability.

� We want to show that the result of a floating-point
operation has the same effect as if the original data had
been perturbed by an amount in O(u).

� If we can show this, then the algorithm is stable.

More examples

� Matrix factorization

� Generally ill-conditioned.

� There are stable algorithms, however.

� Zeros of a polynomial

� Generally ill-conditioned.

� Eigenvalues of a matrix

� For a symmetric matrix, finding eigenvalues is well-
conditioned, finding eigenvectors is ill-conditioned.

� For non-symmetric matrices, both are ill-conditioned.

� In all cases, there are stable algorithms.

