IE 495 Lecture 20

November 9, 2000

Reading for This Lecture

- Primary
- Miller and Boxer, Pages 124-128
- Forsythe and Mohler, Sections 1 and 2

Numerical Algorithms

Numerical Analysis

- So far, we have looked primarily at algorithms for discrete problems.
- Now we will consider problems from continuous mathematics.
- Numerical analysis is the study of algorithms for these problems.
- The main difference between the two areas is that in continuous mathematics, numbers must be approximated in general.

Problems and Algorithms

- A problem is a map from $f: X \rightarrow Y$, where X and Y are normed vector spaces.
- A numerical algorithm is a procedure which calculates $F(x) \in Y$, an approximation of $f(x)$.
- A numerical algorithm does not necessatily have to be finite.
- Some algorithms converge (hopefully quickly) to the true solution "in the limit".

Conditioning

- A problem is well-conditioned if $x^{\prime} \approx x \Rightarrow f\left(x^{\prime}\right) \approx f(x)$.
- Otherwise, it is ill-conditioned.
- Notice that well-conditioned requires all small perturbations to have a small effect.
- Ill-conditioned only requires some small perturbation to have a large effect.
- Condition number of a problem
- Absolute
- Relative

Stability

- An algorithm is stable if $F(x) \approx f\left(x^{\prime}\right)$ for some $x^{\prime} \approx x$.
- This says that a stable algorithm conputes "nearly the right answer" to "nearly the right question".
- Notice the contrast between conditioning and stability:
- Conditioning applies to problems.
- Stability applies to algorithms.

Accuracy

- Stability plus good conditioning implies accuracy.
- If a stable algorithm is applied to a well-conditioned problem, then $\mathrm{F}(\mathrm{x}) \approx \mathrm{f}(\mathrm{x})$.
- Conversely, if a problem is ill-conditioned, an accurate solution may not be possible or even meaningful.
- We cannot ask more of an algorithm than stability.

Examples

- Addition, subtraction, multiplication, division.
- Addition, multiplication, division with positive numbers are well-conditioned problems.
- Subtraction is not.
- Zeros of a quadratic equation
- The problem of computing the two roots is well-conditioned.
- However, the quadratic formula is not a stable algorithm.
- Solving systems of linear equations $A x=b$.
- Conditioning depends on the matrix A.

Floating-point Arithmetic

- The floating-point numbers F are a subset of the real numbers.
- For a real number x, let $f l(x) \in F$ denote the floating point approximation to x.
- Let \odot and •represent the four floating point and exact arithmetic operations.
- Typically, there is a number $u \ll 1$ called machine epsilon, such that
- $f l(x)=x(1+\varepsilon)$ for some $\boldsymbol{\varepsilon}$ with $|\varepsilon| \leq \mathrm{u}$.
- $\forall a, b \in F, a \odot b=(a \cdot b)(1+\varepsilon)$ for some ε with $|\varepsilon| \leq u$.

Stability of Floating Point Arithmetic

- Floating point arithmetic is stable for computing sums, products, quotients, and differences of two numbers.
- Sequences of these operations can be unstable however.
- Example
- Assume 10 digit precision
- $\left(10^{-10}+1\right)-1=0$
$-10^{-10}+(1-1)=10^{-10}$
- Floating point operations are not always associative.

More Bad Example

- Calculating e^{-a} with $a>0$ by Taylor Series.
- The round-off error is approximately u times the largest partial sum.
- Calculating e^{a} and then taking its inverse gives a full-precision answer
- Roots of a quadratic $\left(a x^{2}+b x+c\right)$
- If $x_{1} \approx 0$ and $x_{2} \gg 0$, then the quadratic formula is unstable.
- Computing x_{2} by the quadratic formula and then setting $x_{1}=$ $c x_{2} / a$ is stable.

Backward Error Analysis

- Backward error analysis is a method of analyzing roundoff error and assessing stability.
- We want to show that the result of a floating-point operation has the same effect as if the original data had been perturbed by an amount in $O(u)$.
- If we can show this, then the algorithm is stable.

More examples

- Matrix factorization
- Generally ill-conditioned.
- There are stable algorithms, however.
- Zeros of a polynomial
- Generally ill-conditioned.
- Eigenvalues of a matrix
- For a symmetric matrix, finding eigenvalues is wellconditioned, finding eigenvectors is ill-conditioned.
- For non-symmetric matrices, both are ill-conditioned.
- In all cases, there are stable algorithms.

