IE 495 Lecture 2

August 31, 2000

Reading for this lecture

- Primary
- Miller and Boxer, Chapter 5
- Aho, Hopcroft, and Ullman, Chapter 1
- Fountain, Chapter 4
- Secondary
- Roosta, Chapter 2
- Cosnard and Trystram, Chapters 4

Interconnection Networks

Aside: Introduction to Graphs

- A graph $G=(V, E)$ is defined by two sets, a finite, nonempty set V of vertices (or nodes) and a set $E \subseteq V \times$ V of edges.
- Example: A road network.
- The edges can be either ordered pairs or unordered pairs.
- If the edges are ordered pairs, then they are usually called arcs and the graph is called a directed graph.
- Otherwise, the graph is called undirected.
- See AHU, Section 2.3

(Undirected) Graph Terms

- Vertices u and v are endpoints of the edge (u, v).
- We say an edge $\mathrm{e}=(u, v)$ is incident to its endpoints.
- Two vertices u and v are adjacent if $(u, v) \in E$.
- The degree of a vertex is the number of edges incident to it (equivalently, the number of vertices adjacent to it).
- A path is a sequence of edges $\left(v_{1}, v_{2}\right),\left(v_{2}, v_{3}\right), \ldots,\left(v_{n-1}, v_{n}\right)$
- The length of such a path is $n-1$.
- Often, we represent a path simply as a sequence of vertices.

Applications of Graph Theory

- Graph theory is a very rich subject area
- Sample Applications
- Shortest Path Problem
- Minimum Spanning Tree
- Traveling Salesman Problem

What is an interconnection network?

- A graph (directed or undirected)
- The nodes are the processors
- The edges represent direct connections
- Properties and Terms
- Degree of the Network
- Communication Diameter
- Bisection Width
- Processor Neighborhood
- Connectivity Matrix
- Adjacency Matrix

Measures of Goodness

- Communication diameter: The maximum shortest path between two processors.
- Bisection width: The minimum cut such that the two resulting sets of processors have the same order of magnitude.
- Connectivity Matrix
- Adjacenecy Matrix

Connectivity Matrices

Example 1

Connectivity Matrices

Example 2

2-step Connectivity Matrices

Example 2

N-step Connectivity Matrices

- Indicates the processor pairs that can reach each other in N steps
- Computed using Boolean matrix multiplication
- The corresponding adjacency matrix indicates how many disjoint paths connect each pair.

	0	1	2	3
0	1	1	1	
1	1	1	1	1
2	1	1	1	1
3		1	1	1

	0	1	2	3
0	1	1	2	1
1	1	1	1	2
2	2	1	1	1
3	1	2	1	1

Linear Array

Diameter

Bisection Width
Degree

Mesh

Diameter
?
Bisection Width
Degree

Other Schemes

- Pyramid: A 4-ary tree where each level is connected as a mesh
- Hypercube: Two processors are connected if and only if their ID \#'s differ in exactly one bit.
- Low communications diameter
- High bisection width
- Doesn't have constant degree
- Perfect Shuffle: Processor i is connected one-way to processor $2 i \bmod (N-1)$.
- Others: Star, De Bruijn, Delta, Omega, Butterfly

Models of Computation

Analysis of Algorithms

- We are interested in the time and space needed to perform an algorithm.
- There are several ways of approaching this analysis.
- Worst case
- Average case
- Best case
- Worst case is the most common type of analysis (why?).
- Generally speaking, time is the most constraining resource.

Random Access Machine Model

A RAM Program

- At each time step, one elementary operation is completed.
- Sample list of elementary operations

- LOAD	- READ
- STORE	- WRITE
- ADD	- JUMP
- SUB	- JGTZ
- MULT	- JZERO
- DIV	- HALT

