IE 495 Lecture 2

August 31, 2000

Reading for this lecture

- Primary
 - Miller and Boxer, Chapter 5
 - Aho, Hopcroft, and Ullman, Chapter 1
 - Fountain, Chapter 4
- Secondary
 - Roosta, Chapter 2
 - Cosnard and Trystram, Chapters 4

Interconnection Networks

Aside: Introduction to Graphs

- A graph G = (V, E) is defined by two sets, a finite, nonempty set *V* of *vertices* (or nodes) and a set $E \subseteq V \times V$ of *edges*.
- Example: A road network.
- The edges can be either ordered pairs or unordered pairs.
- If the edges are ordered pairs, then they are usually called *arcs* and the graph is called a *directed graph*.
- Otherwise, the graph is called *undirected*.
- See AHU, Section 2.3

(Undirected) Graph Terms

- Vertices *u* and *v* are *endpoints* of the edge (*u*, *v*).
- We say an edge e = (u, v) is *incident to* its endpoints.
- Two vertices *u* and *v* are *adjacent* if $(u, v) \in E$.
- The *degree* of a vertex is the number of edges incident to it (equivalently, the number of vertices adjacent to it).
- A *path* is a sequence of edges (v_1, v_2) , (v_2, v_3) , ..., (v_{n-1}, v_n)
- The *length* of such a path is *n*-1.
- Often, we represent a path simply as a sequence of vertices.

Applications of Graph Theory

- Graph theory is a very rich subject area
- Sample Applications
 - Shortest Path Problem
 - Minimum Spanning Tree
 - Traveling Salesman Problem

What is an interconnection network?

- A graph (directed or undirected)
 - The nodes are the processors
 - The edges represent direct connections
- Properties and Terms
 - Degree of the Network
 - Communication Diameter
 - Bisection Width
 - Processor Neighborhood
 - Connectivity Matrix
 - Adjacency Matrix

Measures of Goodness

- Communication diameter: The maximum shortest path between two processors.
- **Bisection width**: The minimum cut such that the two resulting sets of processors have the same order of magnitude.
- Connectivity Matrix
- Adjacenecy Matrix

Connectivity Matrices Example 1

Connectivity Matrices Example 2

2-step Connectivity Matrices Example 2

N-step Connectivity Matrices

- Indicates the processor pairs that can reach each other in N steps
- Computed using Boolean matrix multiplication
- The corresponding adjacency matrix indicates how many disjoint paths connect each pair.

Linear Array

Mesh

Diameter Bisection Width Degree

Other Schemes

- Pyramid: A 4-ary tree where each level is connected as a mesh
- Hypercube: Two processors are connected if and only if their ID #'s differ in exactly one bit.
 - Low communications diameter
 - High bisection width
 - Doesn't have constant degree
- Perfect Shuffle: Processor *i* is connected *one-way* to processor *2i mod*(*N-1*).
- Others: Star, De Bruijn, Delta, Omega, Butterfly

Models of Computation

Analysis of Algorithms

- We are interested in the time and space needed to perform an algorithm.
- There are several ways of approaching this analysis.
 - Worst case
 - Average case
 - Best case
- Worst case is the most common type of analysis (why?).
- Generally speaking, time is the most constraining resource.

Random Access Machine Model

A RAM Program

- At each time step, one elementary operation is completed.
- Sample list of elementary operations

- LOAD	- READ
- STORE	- WRITE
- ADD	- JUMP
- SUB	- JGTZ
- MULT	- JZERO
- DIV	- HALT