
IE 495 Lecture 16

October 24, 2000

Reading for This Lecture

� Primary

� Horowitz and Sahni, Chapter 4

� Kozen, Lecture 3

� Secondary

� Miller and Boxer, Chapter 12 (up to page 286)

Prim's Algorithm

S is the set of nodes in the tree

S = {0}

for (i = 0; i < n; i++){

SELECT i ∉ S nearest to S;
S = UNION(S, i);

}

Kruskal's Algorithm

T is the set of edges in the tree

T =

for (i = 0; i < m; i++){
SELECT the cheapest edge e
if (feasible(UNION(T, e)){

UNION(T, e);

}

The Red and Blue Rules

� Start with all edges uncolored

� The Blue Rule:

� Find a cut with no BLUE edges.

� Pick an edge of minimum weight in the cut and color it BLUE.

� The Red Rule:

� Find a cycle containing no RED edges.

� Pick an uncolored edge of maximum weight and color it RED.

� Arbitrary application of the Red and Blue rules will
result in a minimum spanning tree (blue edges).

Matroids

� A matroid is a pair (S, I) where S is a finite set and I is a
family of subsets of S such that

(i) If J ∈ I and I ⊆ J, then I ∈ I

(ii) If I, J and | I| < | J|, then there exists and x ∈ J

�

I such that I ∪
 {x} ∈ I

� Elements of I are called the independent sets.

� Note that all independent sets have the same cardinality.

� A cycle is a setwise minimal dependent set.

� A cut is a setwise minimal subset of S intersecting all
maximal independent sets.

Matroid Examples

� Graph G = (V, E)

� I is the set of forests in G.

� I is the set of subsets E´ of E such G

�

E´ is connected.

� Vector space V

� I is the set of all linearly independent subsets of V.

� Columns/rows of a matrix A

� I is the set of all bases of A.

Importance of Matroids

� Why study matroids?

� Matroids are common mathematical structures.

� In a matroid, we can always find the minimum-weight
maximal independent set using the greedy algorithm.

� Algorithm: Apply the Red and Blue rules arbitrarily.

� In fact, (S, I) satisfying property (i) is a matroid if and
only if we can find a minimum-weight maximal
independent set using the greedy algorithm!

Matroid duality

� The dual of a matroid (S, I) is (S, I*) where

I* = {Ś ⊆S disjoint from some maximal element of I}

� The maximal elements of I* are the complements of the
maximal elements of I.

� Properties

� Cuts in (S, I) are cycles in (S, I*).

� The blue rule in (S, I) is the red rule in (S, I*) with the weights
reversed.

Single-source Shortest Paths

� Given an undirected graph G = (V, E), a length l
e
 for

each edge e, and a source vertex v
0
.

� We are looking for the shortest path from v
0
 to all other

vertices in the graph.

� The algorithm is almost identical to Prim's MST
algorithm.

Dijkstra's Algorithm

S is the set of nodes that have been
examined

S = {0}

d[v] = c(0,v) v∈V

�

S

for (i = 1; i < n; i++){
SELECT w ∉ S with minimum d[w];
S = UNION(S, w);
set d[v] = min(d[v], d[w]+c(w,v));

}

Analysis of Dijkstra's Algorithm

� Correctness

� Optimality

� Implementation

� Complexity

Search Algorithms

The Bin Packing Problem

� We are given a set of n items, each with a size/weight w
i

� We are also given a set of bins of capacity C.

� Bin Packing Problem: Pack the items into the smallest
number of bins possible.

� The total size/weight of items assigned to each bin must
not exceed the capacity C.

� This problem is NP-complete.

Complexity Classes

� P is the class of problems for which there exists
polynomial-time algorithms (on a Turing machine).

� NP is the set of all problems for which there exists a
polynomial-time algorithm on a non-deterministic
Turing machine.

� A non-deterministic polynomial-time Turing machine
essentially allows "infinite parallelism".

� Hence, any problem which can be solved using a search
tree of polynomial depth is in NP.

� Note that any problem in P is also in NP.

NP-complete Problems

� Another way to think of the class NP is as the class of
problems for which we can verify the feasibility of a
given solution in polynomial time.

� The NP-complete problems are the "hardest" problems
in NP.

� If we can solve some NP-complete problem in
polynomial-time, then P = NP.

� Note that the theory of NP-completeness applies only to
decision problems.

Back to Bin-packing

� We cannot hope for a polynomial-time algorithm for this
problem.

� How do we solve it?

Heuristic Methods

� Heuristic methods derive an approximate solution
quickly (usually polynomial time).

� Heuristics for the Bin Packing Problem.

� Performance guarantees.

