IE 495 Lecture 16

October 24, 2000

Reading for This Lecture

- Primary
- Horowitz and Sahni, Chapter 4
- Kozen, Lecture 3
- Secondary
- Miller and Boxer, Chapter 12 (up to page 286)

Prim's Algorithm

$$
\begin{aligned}
& S \text { is the set of nodes in the tree } \\
& S=\{0\} \\
& \text { for }(i=0 ; i<n ; i++)\{ \\
& \quad S E L E C T \text { i } \neq S \text { nearest to } S ; \\
& S=U N I O N(S, i) ; \\
& \}
\end{aligned}
$$

Kruskal's Algorithm

```
T is the set of edges in the tree
T = \varnothing
for (i = 0; i < m; i++){
    SELECT the cheapest edge e
    if (feasible(UNION(T, e)){
        UNION(T, e);
}
```


The Red and Blue Rules

- Start with all edges uncolored
- The Blue Rule:
- Find a cut with no BLUE edges.
- Pick an edge of minimum weight in the cut and color it BLUE.
- The Red Rule:
- Find a cycle containing no RED edges.
- Pick an uncolored edge of maximum weight and color it RED.
- Arbitrary application of the Red and Blue rules will result in a minimum spanning tree (blue edges).

Matroids

- A matroid is a pair (S, I) where S is a finite set and I is a family of subsets of S such that
(i) If $\boldsymbol{J} \in I$ and $I \subseteq \mathbf{J}$, then $I \in I$
(ii) If I, J and $|I|<|J|$, then there exists and $x \in J \backslash I$ such that $\mathrm{I} \cup$ $\{\mathrm{x}\} \in I$
- Elements of I are called the independent sets.
- Note that all independent sets have the same cardinality.
- A cycle is a setwise minimal dependent set.
- A cut is a setwise minimal subset of S intersecting all maximal independent sets.

Matroid Examples

- Graph $G=(V, E)$
- I is the set of forests in G.
- I is the set of subsets E^{\prime} of E such $G \backslash E^{\prime}$ is connected.
- Vector space V
- I is the set of all linearly independent subsets of V.
- Columns/rows of a matrix A
- I is the set of all bases of A.

Importance of Matroids

- Why study matroids?
- Matroids are common mathematical structures.
- In a matroid, we can always find the minimum-weight maximal independent set using the greedy algorithm.
- Algorithm: Apply the Red and Blue rules arbitrarily.
- In fact, (S, I) satisfying property (i) is a matroid if and only if we can find a minimum-weight maximal independent set using the greedy algorithm!

Matroid duality

- The dual of a matroid (S, I) is $\left(S, I^{*}\right)$ where

$$
I^{*}=\left\{S^{\prime} \subseteq S \text { disjoint from some maximal element of } I\right\}
$$

- The maximal elements of I^{*} are the complements of the maximal elements of I.
- Properties
- Cuts in (S, I) are cycles in $\left(S, I^{*}\right)$.
- The blue rule in (S, I) is the red rule in $\left(S, I^{*}\right)$ with the weights reversed.

Single-source Shortest Paths

- Given an undirected graph $G=(V, E)$, a length l_{e} for each edge e, and a source vertex v_{0}.
- We are looking for the shortest path from v_{0} to all other vertices in the graph.
- The algorithm is almost identical to Prim's MST algorithm.

Dijkstra's Algorithm

S is the set of nodes that have been examined
$S=\{0\}$
$d[v]=c(0, v) \quad \forall v \in V \backslash S$
for ($i=1 ; i<n ; i++$) $\{$
SELECT w $\notin S$ with minimum d[w];
$S=\operatorname{UNION}(S, w) ;$
set $d[v]=\min (d[v], d[w]+c(w, v)) ;$
\}

Analysis of Dijkstra's Algorithm

- Correctness
- Optimality
- Implementation
- Complexity

Search Algorithms

The Bin Packing Problem

- We are given a set of n items, each with a size/weight w_{i}
- We are also given a set of bins of capacity C.
- Bin Packing Problem: Pack the items into the smallest number of bins possible.
- The total size/weight of items assigned to each bin must not exceed the capacity C.
- This problem is NP-complete.

Complexity Classes

- P is the class of problems for which there exists polynomial-time algorithms (on a Turing machine).
- $N P$ is the set of all problems for which there exists a polynomial-time algorithm on a non-deterministic Turing machine.
- A non-deterministic polynomial-time Turing machine essentially allows "infinite parallelism".
- Hence, any problem which can be solved using a search tree of polynomial depth is in $N P$.
- Note that any problem in P is also in $N P$.

NP-complete Problems

- Another way to think of the class $N P$ is as the class of problems for which we can verify the feasibility of a given solution in polynomial time.
- The $N P$-complete problems are the "hardest" problems in $N P$.
- If we can solve some $N P$-complete problem in polynomial-time, then $P=N P$.
- Note that the theory of $N P$-completeness applies only to decision problems.

Back to Bin-packing

- We cannot hope for a polynomial-time algorithm for this problem.
- How do we solve it?

Heuristic Methods

- Heuristic methods derive an approximate solution quickly (usually polynomial time).
- Heuristics for the Bin Packing Problem.
- Performance guarantees.

