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Reading for This Lecture

� Primary

� Horowitz and Sahni, Chapter 4

� Kozen, Lecture 3

� Secondary

� Miller and Boxer, Chapter 12  (up to page 286)



Prim's Algorithm

S is the set of nodes in the tree

S = {0}

for (i = 0; i < n; i++){

SELECT i ∉ S nearest to S;
S = UNION(S, i);

}



Kruskal's Algorithm

T is the set of edges in the tree

T = 

for (i = 0; i < m; i++){
SELECT the cheapest edge e
if (feasible(UNION(T, e)){

UNION(T, e);

}



The Red and Blue Rules

� Start with all edges uncolored

� The Blue Rule:

� Find a cut with no BLUE edges.

� Pick an edge of minimum weight in the cut and color it BLUE.

� The Red Rule:

� Find a cycle containing no RED edges.

� Pick an uncolored edge of maximum weight and color it RED.

� Arbitrary application of the Red and Blue rules will 
result in a minimum spanning tree (blue edges).



Matroids

� A matroid is a pair (S, I) where S is a finite set and I is a 
family of subsets of S such that

(i) If J ∈ I and I ⊆ J, then I ∈ I

(ii) If I, J and | I| < | J|, then there exists and x ∈ J

�

I such that I ∪  
  {x} ∈ I

� Elements of I are called the independent sets.

� Note that all independent sets have the same cardinality.

� A cycle is a setwise minimal dependent set.

� A cut is a setwise minimal subset of S intersecting all 
maximal independent sets.



Matroid Examples

� Graph G = (V, E)

� I is the set of forests in G.

� I is the set of subsets E´ of E such G

�

E´ is connected.

� Vector space V

� I is the set of all linearly independent subsets of V.

� Columns/rows of a matrix A

� I is the set of all bases of A.



Importance of Matroids

� Why study matroids?

� Matroids are common mathematical structures.

� In a matroid, we can always find the minimum-weight 
maximal independent set using the greedy algorithm.

� Algorithm: Apply the Red and Blue rules arbitrarily.

� In fact, (S, I) satisfying property (i) is a matroid if and 
only if we can find a minimum-weight maximal 
independent set using the greedy algorithm!



Matroid duality

� The dual of a matroid (S, I) is (S, I*) where

I* = {Ś ⊆S disjoint from some maximal element of I}

� The maximal elements of I* are the complements of the 
maximal elements of I.

� Properties

� Cuts in (S, I) are cycles in (S, I*).

� The blue rule in (S, I) is the red rule in (S, I*) with the weights 
reversed.



Single-source Shortest Paths

� Given an undirected graph G = (V, E), a length l
e
 for 

each edge e, and a source vertex v
0
.

� We are looking for the shortest path from v
0
 to all other 

vertices in the graph.

� The algorithm is almost identical to Prim's MST 
algorithm.



Dijkstra's Algorithm

S is the set of nodes that have been 
examined

S = {0}

d[v] = c(0,v) v∈V

�

S

for (i = 1; i < n; i++){
SELECT w ∉ S with minimum d[w];
S = UNION(S, w);
set d[v] = min(d[v], d[w]+c(w,v));

}



Analysis of Dijkstra's Algorithm

� Correctness

� Optimality

� Implementation

� Complexity



Search Algorithms



The Bin Packing Problem

� We are given a set of n items, each with a size/weight w
i

� We are also given a set of bins of capacity C.

� Bin Packing Problem: Pack the items into the smallest 
number of bins possible.

� The total size/weight of items assigned to each bin must 
not exceed the capacity C.

� This problem is NP-complete.



Complexity Classes

� P is the class of problems for which there exists 
polynomial-time algorithms (on a Turing machine).

� NP is the set of all problems for which there exists a 
polynomial-time algorithm on a non-deterministic 
Turing machine.

� A non-deterministic polynomial-time Turing machine 
essentially allows "infinite parallelism".

� Hence, any problem which can be solved using a search 
tree of polynomial depth is in NP.

� Note that any problem in P is also in NP.



NP-complete Problems

� Another way to think of the class NP is as the class of 
problems for which we can verify the feasibility of a 
given solution in polynomial time.

� The NP-complete problems are the "hardest" problems 
in NP.

� If we can solve some NP-complete problem in 
polynomial-time, then P = NP.

� Note that the theory of NP-completeness applies only to 
decision problems.



Back to Bin-packing

� We cannot hope for a polynomial-time algorithm for this 
problem.

� How do we solve it?



Heuristic Methods

� Heuristic methods derive an approximate solution 
quickly (usually polynomial time).

� Heuristics for the Bin Packing Problem.

� Performance guarantees.


