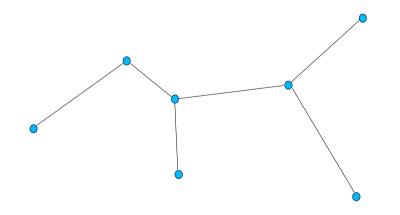
IE 495 Lecture 14


October 17, 2000

Reading for This Lecture

- Primary
 - Horowitz and Sahni, Chapter 4
 - Kozen, Lecture 3
- Secondary
 - Miller and Boxer, Chapter 12 (up to page 286)

Spanning Trees

- We are given a graph G = (V, E).
- A spanning tree of *E* is a maximal acyclic subgraph (*V*, *T*) of *G*.
- A spanning tree always has |V|-1 edges (why?).

Minimum Spanning Tree

- We associate a weight w_e with each edge e.
- <u>Objective</u>: Find a spanning tree of minimum weight.
- Applications

Prim's Algorithm

S is the set of nodes in the tree

 $S = \{0\}$

for (i = 1; i < n; i++){

SELECT $v \notin S$ nearest to S; S = UNION(S, v);

}

Analysis of Prim's Algorithm

• Correctness

• Optimality

• Implementation

• Complexity

Kruskal's Algorithm

T is the set of edges in the tree

 $T = \emptyset$

}

for (i = 0; i < m; i++){
SELECT the cheapest edge e
if (feasible(UNION(T, e)){
 UNION(T, e);</pre>

Analysis of Kruskal's Algorithm

• Correctness

• Optimality

• Implementation

• Complexity

Parallel MST

- Prim's Algorithm
- Each processor is responsible for a subset of the nodes.
- Implementation

• Analysis

Baruvka's Algorithm

- At each step, select all edges that connect some component of the graph to it's nearest neighbor.
- Add all these edges to the tree simultaneously.
- Why does this work?

• Sequential Implementation