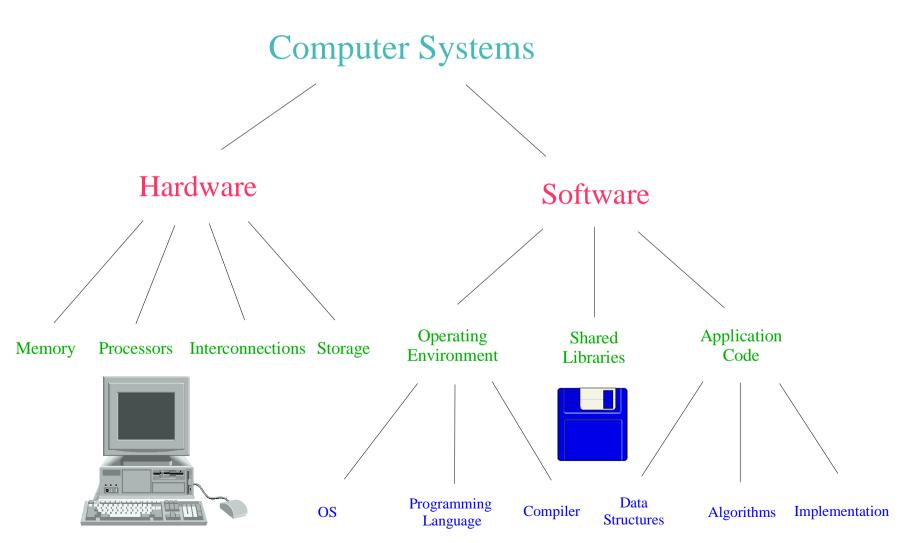
IE 495 Lecture 13

October 12, 2000

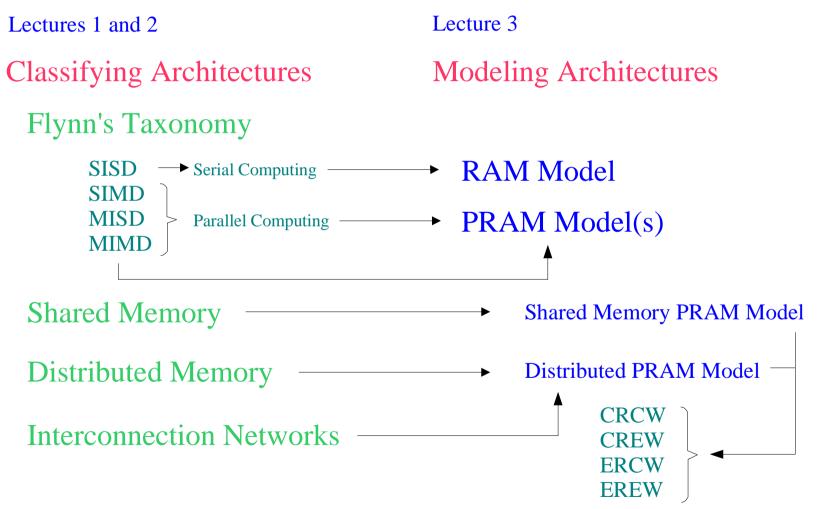
Reading for This Lecture

- Primary
 - Horowitz and Sahni, Chapter 4

Course Recap



Classifying and Modeling Architectures



Analyzing Architectures and Algorithms

Lecture 2

Analyzing Architectures

Interconnection Networks

Performance Measures

Graph Properties

Degree Bisection Width Communication Diameter Connectivity Matrix Adjacency Matrix

Time to Perform Operations

Semigroup operations Sorting operations Lecture 3 and 4

Analyzing Algorithms

Asymptotic Analysis

Modeling Assumptions Classifying Algorithms

Orders of Magnitudence Classes Polynomial/Exponential Time Complexity Inductor Generations/

Master Theorem

Design, and Analysis of Parallel Algorithms

- Scalability
- Performance Measures
- Design Issues
- Implementation
 - OpenMP
 - PVM

Basic Data Structures

- Stacks, Lists, and Queues
- Heaps
- Hashing
- Graphs
- Analysis
- Implementation

Second Half of the Course

- Greedy Algorithms and Matroids
- Graph Algorithms
- Search Algorithms/Divide-and-Conquer
 - Branch and Bound
 - IP
- Matrix Algorithms/Numerical Algorithms
 - Numerical Analysis

Greedy Algorithms

Basic Algorithm

A is an array of the inputs $S = \emptyset;$ for (i = 0; i < n; i++){ x = SELECT(A);if (feasible(UNION(S, x))){ S = UNION(S, x);}

Basic Data Structures

• SELECT

• UNION

Fractional Knapsack Problem

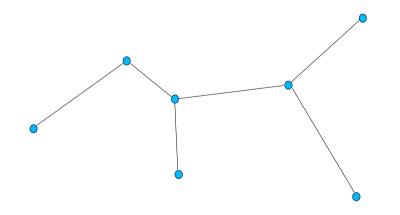
- We are given **n** objects.
- Each object has a weight w_i and a profit p_i .
- We also have a knapsack with capacity *M*.
- <u>Objective</u>: Fill the knapsack as profitably as possible.
- We allow fractional objects.
- Algorithm
- Analysis

Job Sequencng with Deadlines

- We are given a set of *n* jobs.
- Each job takes one unit of time.
- Each job has a deadline d_i and a profit p_i .
- <u>Objective</u>: A feasible schedule that maximizes profit.
- Algorithm
- Analysis

Spanning Trees

- We are given a graph G = (V, E).
- A spanning tree of *E* is a maximal acyclic subgraph (*V*, *T*) of *G*.
- A spanning tree always has |V|-1 edges (why?).



Minimum Spanning Tree

- We associate a weight w_e with each edge e.
- <u>Objective</u>: Find a spanning tree of minimum weight.
- Applications

Prim's Algorithm

S is the set of nodes in the tree

 $S = \{0\}$

for (i = 0; i < n; i++){

SELECT $i \notin S$ nearest to S; S = UNION(S, i);

}

Analysis of Prim's Algorithm

• Correctness

• Optimality

• Implementation

• Complexity

Kruskal's Algorithm

T is the set of edges in the tree

 $T = \emptyset$

}

for (i = 0; i < m; i++){
SELECT the cheapest edge e
if (feasible(UNION(T, e)){
 UNION(T, e);</pre>

Analysis of Kruskal's Algorithm

• Correctness

• Optimality

• Implementation

• Complexity