
IE 495 Lecture 13

October 12, 2000

Reading for This Lecture

� Primary

� Horowitz and Sahni, Chapter 4

Course Recap

Our View of the World

Hardware Software

Memory Processors Interconnections Storage

Computer Systems

Operating
Environment

OS Programming
Language

Compiler

Application
Code

Data
Structures Algorithms Implementation

Shared
Libraries

Classifying and Modeling
Architectures

Classifying Architectures

Flynn's Taxonomy

SISD
SIMD
MISD
MIMD

Modeling Architectures

Shared Memory

Distributed Memory

RAM Model

PRAM Model(s)

Interconnection Networks

Serial Computing

Parallel Computing

Shared Memory PRAM Model

Distributed PRAM Model

CRCW
CREW
ERCW
EREW

Lectures 1 and 2 Lecture 3

Analyzing Architectures and
Algorithms

Performance Measures

Analyzing Architectures

Interconnection Networks

Graph Properties

Degree
Bisection Width
Communication Diameter
Connectivity Matrix
Adjacency Matrix

Time to Perform Operations

Semigroup operations
Sorting operations

Analyzing Algorithms

Asymptotic Analysis

Modeling Assumptions
Classifying Algorithms

Orders of Magnitude
Polynomial/Exponential
Time Complexity
Space ComplexityInduction and Recursion

Master Theorem

Order Relations/
Equivalence Classes

Lecture 2 Lecture 3 and 4

Design, and Analysis of Parallel
Algorithms

� Scalability

� Performance Measures

� Design Issues

� Implementation

� OpenMP

� PVM

Basic Data Structures

� Stacks, Lists, and Queues

� Heaps

� Hashing

� Graphs

� Analysis

� Implementation

Second Half of the Course

� Greedy Algorithms and Matroids

� Graph Algorithms

� Search Algorithms/Divide-and-Conquer

� Branch and Bound

� IP

� Matrix Algorithms/Numerical Algorithms

� Numerical Analysis

Greedy Algorithms

Basic Algorithm

A is an array of the inputs

S = �

for (i = 0; i < n; i++){
x = SELECT(A);
if (feasible(UNION(S, x))){
S = UNION(S, x);

 }
}

Basic Data Structures

� SELECT

� UNION

Fractional Knapsack Problem

� We are given n objects.

� Each object has a weight w
i
 and a profit p

i
.

� We also have a knapsack with capacity M.

� Objective: Fill the knapsack as profitably as possible.

� We allow fractional objects.

� Algorithm

� Analysis

Job Sequencng with Deadlines

� We are given a set of n jobs.

� Each job takes one unit of time.

� Each job has a deadline d
i
 and a profit p

i
.

� Objective: A feasible schedule that maximizes profit.

� Algorithm

� Analysis

Spanning Trees

� We are given a graph G = (V, E).

� A spanning tree of E is a maximal acyclic subgraph (V,
T) of G.

� A spanning tree always has |V|-1 edges (why?).

Minimum Spanning Tree

� We associate a weight w
e
 with each edge e.

� Objective: Find a spanning tree of minimum weight.

� Applications

Prim's Algorithm

S is the set of nodes in the tree

S = {0}

for (i = 0; i < n; i++){

SELECT i ∉ S nearest to S;
S = UNION(S, i);

}

Analysis of Prim's Algorithm

� Correctness

� Optimality

� Implementation

� Complexity

Kruskal's Algorithm

T is the set of edges in the tree

T =

for (i = 0; i < m; i++){
SELECT the cheapest edge e
if (feasible(UNION(T, e)){

UNION(T, e);

}

Analysis of Kruskal's Algorithm

� Correctness

� Optimality

� Implementation

� Complexity

