
IE 495 Lecture 12

October 5, 2000

Reading for This Lecture

� Primary

� Horowitz and Sahni, Chapter 2, Section 3

� Kozen, Lectures 8-11

Review From Last Time

Binomial Trees

� The binomial tree of rank i (B
i
) is defined recursively.

� B
i
 consists of a root with i children B

0
, . . ., B

i-1
.

B
0

B
3B

2B
1

Binomial Heaps

� A binomial heap is a collection of heap ordered binomial
trees and a pointer to the overall max/min.

� No more than one tree of each rank is allowed.

� The children of each vertex are maintained in a circular
linked list.

� The basic operation is linking.

� Two trees of rank i can be combined into one tree of
rank i+1 in constant time.

Eager Meld

� We can combine two heaps by performing a meld()
reminiscent of binary addition.

� Successively link trees of equal rank and "carry" one if
necessary.

� Must track the position of the new min/max element.

� This operation takes O(log n) time.

Inserting into a Binomial Heap

� To insert() an element:

� Make a new heap from the single element to be inserted.

� Meld the new heap with the old one.

� To make_heap() from scratch, perform a sequence of
inserts.

� To delete() the min/max element:

� The children of this element form a new binomial heap.

� Meld the old heap and the new one.

Amortized Analysis

� meld() and delete() both take O(log n).

� We will use amortized analysis to show that insert()
is constant time overall.

� Idea: The total number of linking operations can never
be more than the number of insert operations.

� This means that any sequence of inserts takes constant
time on average.

Data Structures for Disjoint Sets

� We have a set S and a partition S
1
, . . ., S

n
 of S.

� We want a data structure that supports

� union()

� find()

� Applications

� Constructing equivalence classes

� Graph algorithms

Union-Find

� Represent each member of the partition as a rooted tree.

� Choose a designated "representative".

� All other elements are connected to the representative.

First implementation

� union()

� Point root of set A to root of set B

� find()

� Follow the path to the root.

� Analysis

A Tale of Two Heuristics

� How can we improve the complexity of find()?

� Heuristic 1

� Heuristic 2

Analysis

� Heuristic 1 guarantees that the depth of each tree is no
more than log n + 1.

� The proof of this is by induction.

� This implies that find() can be performed in
O(log n)

� Heuristic 2 allows us to perform find() in almost
constant time (amortized).

Ackerman's Function

� Ackerman's function is an extremely fast growing
function.

� Definition

� A
0
(x) = x + 1

� A
k+1

(x) = A
k
x(x), where A

k
i+1(x) = A

k
(A

k
i(x))

� A
0
(x) = x+1, A

1
(x) = 2x, A

2
(x) = x2x, A

3
(x) ≥ 2 ↑ x

� A
4
(2) is greater than the number of particles in the

known universe or the number of nanoseconds since the
Big Bang (large number).

Inverse Ackerman's Function

� Define A(k) = A
k
(2).

� Now define α(n) = smallest k such that A(k) ≥ n

� α(n) is the inverse Ackerman's function

� α(n) is 4 for all practical purposes.

� Let T(m,n) be the running time of a sequence of m ≥ n
find() operations and n-1 union() operations.

� T(m, n) ∈O(α(n)(m+n))

Hash Tables

� Symbol Table

� Determine presence of an arbitrary element

� Allow easy insertion and deletion

� Hashing is an easy and efficient implemetation

� Hash function

� Maps each possible element into a specified bucket

� The number of buckets is much less than the number of
possible elements

� Each bucket can store a limited number of elements

Parameters

� T = total number of possible elements

� b = number of buckets

� s = number of elements allowed in each bucket

� n = number of elements in the table

� n/T = element density

� α = n/sb = loading density

Hash Functions

� Collision: two elements map to the same bucket

� Overflow: too many elements in one bucket

� Choosing a hash function

� easy to compute

� minimize collisions

� If P(f(X) = i) = 1/b over all elements X, then f is a
uniform hash function

Sample Hash Function

� Interpret the element of the set as an integer X

� Take the hash function to

f(X) = X mod M

� M is the number of buckets

� The choice of M is critical

� M should not be a power of 2 or an even number

� M should be a prime number with some other nice
properties

Overflow Handling

� Use the next available slot

� Bad performance when the hash table fills up.

� Can end up searching the whole table.

� Average number of comparisons (2-α)/(2-2α).

� Use linked lists

� Only compare items with same hash value.

� Average number of comparison 1 + α/2.

� Average case for hash tables is good, but worst case is
very bad.

