|E 495 L ecture 12

October 5, 2000



Reading for This Lecture

* Primary
— Horowitz and Sahni, Chapter 2, Section 3
- Kozen, Lectures 8-11



Review From Last Time



Binomial Trees

o Thebinomial tree of rank 1 (B) isdefined recursively.

e B consistsof aroot withi childrenB, ..., B ..

0 1 2 3

R




Binomial Heaps

A binomial heap is a collection of heap ordered binomial
trees and a pointer to the overall max/min.

No more than one tree of each rank is allowed.

The children of each vertex are maintained in acircular
linked list.

The basic operation is linking.

Two trees of rank 1 can be combined into one tree of
rank 1+ 1 in constant time.



Eager Meld

We can combine two heaps by performing ameld()
reminiscent of binary addition.

Successively link trees of equal rank and "carry" one if
necessary.

Must track the position of the new min/max el ement.
This operation takes O(log n) time.



Inserting into a Binomial Heap

e TOo insert () aneement:

- Make a new heap from the single element to be inserted.
- Meld the new heap with the old one.

» Tomake heap () from scratch, perform a sequence of
INSerts.

e Todelete () the min/max element:

— The children of this e ement form anew binomial heap.
- Meld the old heap and the new one.



Amortized Analysis

meld() and delete () bothtake O(log n).

We will use amortized analysisto show that insert ()
IS constant time overall.

|dea: The total number of linking operations can never
be more than the number of insert operations.

This means that any sequence of inserts takes constant
lime on average.



Data Structures for Digoint Sets

« Wehaveaset Sand apartitionS, ..., S of S

* \Wewant adata structure that supports
— union()
- find()
e Applications
— Constructing equivalence classes
- Graph algorithms



Union-Find

* Represent each member of the partition as arooted tree.
* Choose adesignated "representative”.
e All other elements are connected to the representative.

AN
/\



First implementation

* union()

— Point root of set Ato root of set B
e find()

- Follow the path to the root.
e Analysis



A Tae of Two Heuristics

e How can we improve the complexity of find()?
e Heuristic1

e Heuristic 2




Analysis

Heuristic 1 guarantees that the depth of each treeisno
more than og n+ 1.

The proof of thisis by induction.

Thisimpliesthat find () canbeperformedin
O(log n)

Heuristic 2 allows usto perform find () inamost
constant time (amortized).



Ackerman's Function

Ackerman's function is an extremely fast growing
function.

Definition

- A(X)=x+1

- A, () = AXX), where A(x) = A (A(X))
AMX=x+tLAMX=2AK=Xx2AKX==21X

A,(2) Is greater than the number of particlesin the

known universe or the number of nanoseconds since the
Big Bang (large number).



|nverse Ackerman's Function

Define A(K) = A (2).

Now define a(n) = smallest k such that A(k) = n
a(n) isthe inverse Ackerman's function

a(n) is4 for al practical purposes.

Let T(m,n) be the running time of a sequence of m=n
find() operationsandn-1union () operations.

T(m, n) JO(a(n)(m+n))



Hash Tables

e Symbol Table

— Determine presence of an arbitrary element

- Allow easy insertion and deletion
* Hashing is an easy and efficient implemetation
e Hash function

— Maps each possible element into a specified bucket

- The number of buckets is much less than the number of
possible elements

— Each bucket can store alimited number of elements



Parameters

T = total number of possible e ements

b = number of buckets

s = number of elements allowed in each bucket
n = number of elementsin the table

n/T = element density

o = n/sb = loading density



Hash Functions

Collision: two elements map to the same bucket
Overflow: too many elements in one bucket

Choosing a hash function
- easy to compute
- minimize collisions

If P(f(X) = 1) = /b over al elements X, thenfisa
uniform hash function



Sample Hash Function

Interpret the element of the set as an integer X
Take the hash function to

f(X) = X mod M
M is the number of buckets
The choice of M iscritical
M should not be a power of 2 or an even number

M should be a prime number with some other nice
properties



Overflow Handling

e Usethe next avallable dlot

- Bad performance when the hash table fills up.
— Can end up searching the whole table.

- Average number of comparisons (2-a)/(2-20).
e Uselinkedlists

- Only compare items with same hash value.

— Average number of comparison 1 + a/2.

* Average case for hash tablesis good, but worst case is
very bad.



