IE 495 Lecture 12

October 5, 2000

Reading for This Lecture

- Primary
 - Horowitz and Sahni, Chapter 2, Section 3
 - Kozen, Lectures 8-11

Review From Last Time

Binomial Trees

- The *binomial tree* of rank $i(B_i)$ is defined recursively.
- B_i consists of a *root* with *i* children B_0, \ldots, B_{i-1} .

Binomial Heaps

- A *binomial heap* is a collection of heap ordered binomial trees and a pointer to the overall max/min.
- No more than one tree of each rank is allowed.
- The children of each vertex are maintained in a circular linked list.
- The basic operation is *linking*.
- Two trees of rank *i* can be combined into one tree of rank *i*+1 in constant time.

Eager Meld

- We can combine two heaps by performing a *meld()* reminiscent of binary addition.
- Successively link trees of equal rank and "carry" one if necessary.
- Must track the position of the new min/max element.
- This operation takes O(log n) time.

Inserting into a Binomial Heap

- To *insert()* an element:
 - Make a new heap from the single element to be inserted.
 - Meld the new heap with the old one.
- To *make_heap()* from scratch, perform a sequence of inserts.
- To *delete()* the min/max element:
 - The children of this element form a new binomial heap.
 - Meld the old heap and the new one.

Amortized Analysis

- *meld()* and *delete()* both take O(log n).
- We will use *amortized analysis* to show that *insert()* is constant time overall.
- <u>Idea</u>: The total number of linking operations can never be more than the number of insert operations.
- This means that any sequence of inserts takes constant time *on average*.

Data Structures for Disjoint Sets

- We have a set *S* and a partition S_1, \ldots, S_n of *S*.
- We want a data structure that supports
 - union()
 - find()
- Applications
 - Constructing equivalence classes
 - Graph algorithms

Union-Find

- Represent each member of the partition as a rooted tree.
- Choose a designated "representative".
- All other elements are connected to the representative.

First implementation

- union()
 - Point root of set *A* to root of set *B*
- find()
 - Follow the path to the root.
- Analysis

A Tale of Two Heuristics

- How can we improve the complexity of *find()*?
- <u>Heuristic 1</u>

• <u>Heuristic 2</u>

Analysis

- Heuristic 1 guarantees that the depth of each tree is no more than $\lfloor log n \rfloor + 1$.
- The proof of this is by induction.
- This implies that *find()* can be performed in O(log n)
- Heuristic 2 allows us to perform *find()* in *almost* constant time (amortized).

Ackerman's Function

- Ackerman's function is an extremely fast growing function.
- Definition
 - $-A_0(x) = x + 1$
 - $A_{k+1}(x) = A_k^{x}(x)$, where $A_k^{i+1}(x) = A_k(A_k^{i}(x))$
- $A_0(x) = x+1, A_1(x) = 2^x, A_2(x) = x2^x, A_3(x) \ge 2 \uparrow x$
- A₄(2) is greater than the number of particles in the known universe or the number of nanoseconds since the Big Bang (large number).

Inverse Ackerman's Function

- Define $A(k) = A_k(2)$.
- Now define $\alpha(n) = \text{smallest } k \text{ such that } A(k) \ge n$
- $\alpha(n)$ is the inverse Ackerman's function
- $\alpha(n)$ is 4 for all practical purposes.
- Let *T*(*m*,*n*) be the running time of a sequence of *m* ≥ *n find()* operations and *n*-1 *union()* operations.
- $T(m, n) \in O(\alpha(n)(m+n))$

Hash Tables

- Symbol Table
 - Determine presence of an arbitrary element
 - Allow easy insertion and deletion
- Hashing is an easy and efficient implementation
- Hash function
 - Maps each possible element into a specified bucket
 - The number of buckets is much less than the number of possible elements
 - Each bucket can store a limited number of elements

Parameters

- T = total number of possible elements
- b = number of buckets
- *s* = number of elements allowed in each bucket
- n = number of elements in the table
- n/T = element density
- $\alpha = n/sb =$ loading density

Hash Functions

- *Collision*: two elements map to the same bucket
- *Overflow*: too many elements in one bucket
- Choosing a hash function
 - easy to compute
 - minimize collisions
- If P(f(X) = i) = 1/b over all elements *X*, then *f* is a *uniform hash function*

Sample Hash Function

- Interpret the element of the set as an integer *X*
- Take the hash function to

 $f(X) = X \bmod M$

- *M* is the number of buckets
- The choice of *M* is critical
- *M* should not be a power of 2 or an even number
- *M* should be a prime number with some other nice properties

Overflow Handling

- Use the next available slot
 - Bad performance when the hash table fills up.
 - Can end up searching the whole table.
 - Average number of comparisons $(2-\alpha)/(2-2\alpha)$.
- Use linked lists
 - Only compare items with same hash value.
 - Average number of comparison $1 + \alpha/2$.
- Average case for hash tables is good, but worst case is very bad.