IE 495 Lecture 12

October 5, 2000

Reading for This Lecture

- Primary
- Horowitz and Sahni, Chapter 2, Section 3
- Kozen, Lectures 8-11

Review From Last Time

Binomial Trees

- The binomial tree of rank $i\left(B_{i}\right)$ is defined recursively.
- B_{i} consists of a root with i children B_{0}, \ldots, B_{i-1}

B_{2}
B_{3}

Binomial Heaps

- A binomial heap is a collection of heap ordered binomial trees and a pointer to the overall max/min.
- No more than one tree of each rank is allowed.
- The children of each vertex are maintained in a circular linked list.
- The basic operation is linking.
- Two trees of rank i can be combined into one tree of rank $i+1$ in constant time.

Eager Meld

- We can combine two heaps by performing a meld() reminiscent of binary addition.
- Successively link trees of equal rank and "carry" one if necessary.
- Must track the position of the new min/max element.
- This operation takes $O(\log n)$ time.

Inserting into a Binomial Heap

- To insert() an element:
- Make a new heap from the single element to be inserted.
- Meld the new heap with the old one.
- To make_heap() from scratch, perform a sequence of inserts.
- To delete() the min/max element:
- The children of this element form a new binomial heap.
- Meld the old heap and the new one.

Amortized Analysis

- meld() and delete() both take O(logn).
- We will use amortized analysis to show that insert () is constant time overall.
- Idea: The total number of linking operations can never be more than the number of insert operations.
- This means that any sequence of inserts takes constant time on average.

Data Structures for Disjoint Sets

- We have a set S and a partition S_{l}, \ldots, S_{n} of S.
- We want a data structure that supports
- union()
- find()
- Applications
- Constructing equivalence classes
- Graph algorithms

Union-Find

- Represent each member of the partition as a rooted tree.
- Choose a designated "representative".
- All other elements are connected to the representative.

First implementation

- union()
- Point root of set A to root of set B
- find()
- Follow the path to the root.
- Analysis

A Tale of Two Heuristics

- How can we improve the complexity of find()?
- Heuristic 1
- Heuristic 2

Analysis

- Heuristic 1 guarantees that the depth of each tree is no more than $\lfloor\log n\rfloor+1$.
- The proof of this is by induction.
- This implies that find() can be performed in $O(\log n)$
- Heuristic 2 allows us to perform find () in almost constant time (amortized).

Ackerman's Function

- Ackerman's function is an extremely fast growing function.
- Definition
- $A_{0}(x)=x+1$
- $A_{k+1}(x)=A_{k}^{x}(x)$, where $A_{k}^{i+1}(x)=A_{k}\left(A_{k}^{i}(x)\right)$
- $A_{0}(x)=x+1, A_{1}(x)=2^{x}, A_{2}(x)=x 2^{x}, A_{3}(x) \geq 2 \uparrow x$
- $A_{4}(2)$ is greater than the number of particles in the known universe or the number of nanoseconds since the Big Bang (large number).

Inverse Ackerman's Function

- Define $A(k)=A_{k}(2)$.
- Now define $\alpha(n)=$ smallest k such that $A(k) \geq n$
- $\alpha(n)$ is the inverse Ackerman's function
- $\alpha(n)$ is 4 for all practical purposes.
- Let $T(m, n)$ be the running time of a sequence of $m \geq n$ find() operations and n-1 union() operations.
- $T(m, n) \in O(\alpha(n)(m+n))$

Hash Tables

- Symbol Table
- Determine presence of an arbitrary element
- Allow easy insertion and deletion
- Hashing is an easy and efficient implemetation
- Hash function
- Maps each possible element into a specified bucket
- The number of buckets is much less than the number of possible elements
- Each bucket can store a limited number of elements

Parameters

- $T=$ total number of possible elements
- $b=$ number of buckets
- $s=$ number of elements allowed in each bucket
- $n=$ number of elements in the table
- $n / T=$ element density
- $\alpha=n / s b=$ loading density

Hash Functions

- Collision: two elements map to the same bucket
- Overflow: too many elements in one bucket
- Choosing a hash function
- easy to compute
- minimize collisions
- If $P(f(X)=i)=1 / b$ over all elements X, then f is a uniform hash function

Sample Hash Function

- Interpret the element of the set as an integer X
- Take the hash function to

$$
f(X)=X \bmod M
$$

- M is the number of buckets
- The choice of M is critical
- M should not be a power of 2 or an even number
- M should be a prime number with some other nice properties

Overflow Handling

- Use the next available slot
- Bad performance when the hash table fills up.
- Can end up searching the whole table.
- Average number of comparisons $(2-\alpha) /(2-2 \alpha)$.
- Use linked lists
- Only compare items with same hash value.
- Average number of comparison $1+\alpha / 2$.
- Average case for hash tables is good, but worst case is very bad.

