IE 495 Lecture 1

August 29, 2000

Fundamentals of Computer Systems

Reading for this lecture

- Primary
 - Roosta, Chapter 1
- Secondary
 - Miller and Boxer, Chapter 5
 - Fountain, Chapters 1 and 2
 - Cosnard and Trystram, Chapters 1 to 3

Pseudo-code notation

- We will often need to write pseudo-code
- Our notation will be loosely based on C with some parallel constructs
- Declarations, etc. can be left out when the context makes it clear
- Basic functions which are not the focus of the exercise can simply be called

```
for (i = 0; i < 10; i++)
    parallel for (j = 0; j < 10; j++)
        find the minimum element of x[i][10*j, 10*(j+1)];</pre>
```

Computer Architecture Flynn's Taxonomy

Single Instruction Stream, Single Data Stream (Serial Computer)

Computer Architectures Flynn's Taxonomy

Single Instruction Stream, Multiple Data Stream (SIMD)

Computer Architectures Flynn's Taxonomy

Multiple Instruction Stream, Single Data Stream (MISD)

Computer Architectures Flynn's Taxonomy

Multiple Instruction Stream, Multiple Data Stream (MIMD)

Memory Configurations

Shared Memory

Memory Configurations

Distributed Memory

Memory Hierarchies

Importance of the memory hierarchy

- Processor-Memory performance gap grows 50% per year.
- Cache memory tries to overcome this performance gap.
- However, it is easy to defeat.
- Example:

for (i = 0; i < 100; i++)
Interchange
for (j = 0; j < 5000; j++)
x[i][j] = 2*x[i][j];</pre>

• Declaring a variable "*register*" in C