Problem Set #3 IE 495

Due September 25

Written Problems

1. A binary relation \equiv on a set A is said to be an equivalence relation on A if it is reflexive, symmetric, and transitive, i.e. for all a, b, $c \in A$,

$$a \equiv a$$
,
 $a \equiv b \Rightarrow b \equiv a$, and
 $(a \equiv b) \land (b \equiv c) \Rightarrow a \equiv c$.

Furthermore, a *partial order* on a set A is defined by a relation " \leq " that is reflexive, transitive, and also obeys the property that for $a, b \in A$

$$(a \le b) \land (b \le a) \Rightarrow b \equiv a$$

A partial order is called a *total order* if every pair of elements of A are related. Recall the set-valued functions Θ , Ω , O, o, and ω we discussed in class (see Lecture 3, slide 16). If \mathcal{D} is the set of all polynomials, we will denote by $\Theta_{\mathcal{D}}: \mathcal{D} \to 2^{\mathcal{D}}$ the function Θ restricted to just the set of polynomials and similarly for the other functions we've discussed.

- a. Use the set–valued function Θ_{\wp} to define an equivalence relation on \mathscr{D} . You must use the definition to prove your assertion.
- b. Use the set–valued function Ω_{\wp} to define a total order on \mathscr{D} .
- c. Explain how this relates to asymptotic analysis of algorithms.
- 2. Compare Amdahl's Law to the bounds presented in the paper by Gustafson. What assumptions does each author make? Which view do you think is more realistic? Give a concrete numerical example of the difference in predicted speedup between the two models.
- 3. Consider a parallel version of the merge sort algorithm discussed in class. Calculate the theoretical speedup of such an algorithm. How does this result fit into the frameworks discussed in Problem 2?
- 4. Is super-linear speedup theoretically possible? Is it possible in practice? Explain a situation in which you might observe super-linear speedup in practice.
- 5. Solve 2 of the recurrence relations in Miller and Boxer page 62.

Programming Problems

6. TBD