Using Cyberinfrastructure Tools to Solve Biobjective Integer Programs

Ted Ralphs, Menal Guzelsoy, and Jeff Linderoth
COR@L Lab, Industrial and Systems Engineering, Lehigh University

Matthew Saltzman and Margaret Wiecek
Mathematical Sciences, Clemson University

INFORMS Annual Meeting 2006, Wednesday, November 8, 2006
Outline of Talk

- Motivation
- Preliminaries
- The WCN Algorithm
- Implementation
- Example
- Computational Results
Motivation: Cable-Trench Problems

- A single commodity must be supplied to a set of customers from a central supply point.

- We want to design a network, possibly obeying capacity and other side constraints.

- In the Cable-Trench Problem, we consider both
 - the cost of construction (the sum of lengths of all links), and
 - the latency of the resulting network (the sum of length multiplied by demand carried for all links).

- These are competing objectives for which we would like to analyze the tradeoff.

- We can formulate this problem as a biobjective integer program.
Solutions for a Small CTP Instance

(a) (b) (c) (d)
A *biobjective* or *bicriterion mixed-integer program* (BMIP) is an optimization problem of the form

\[
\begin{align*}
\text{vmax} & \quad f(x) \\
\text{subject to} & \quad x \in X,
\end{align*}
\]

where

- \(f : \mathbb{R}^n \to \mathbb{R}^2 \) is the *bicriterion objective function*, and
- \(X \subset \mathbb{Z}^p \times \mathbb{R}^{n-p} \) is the *feasible region*, usually defined to be

\[
\{ x \in \mathbb{Z}^p \times \mathbb{R}^{n-p} \mid g_i(x) \leq 0, i = 1, \ldots, m \}
\]

for functions \(g_i : \mathbb{R}^n \to \mathbb{R}, i = 1, \ldots, m \).

The \textit{vmax} operator indicates that we are interested in generating the *efficient solutions* (defined next).
Some Definitions

• $x^1 \in X$ *dominates* $x^2 \in X$ if $f_i(x_1) \geq f_i(x_2)$ for $i = 1, 2$ and at least one inequality is strict.

• If both inequalities are strict, the dominance is *strong* (otherwise *weak*).

• Any $x \in X$ not dominated by any other member of X is said to be *efficient*.

• The set of *outcomes* is defined to be $Y = f(X) \subset \mathbb{R}^2$.

• In outcome space, BMIP can be restated as

$$\begin{align*}
\text{vmax} & \quad y \\
\text{subject to} & \quad y \in f(X),
\end{align*}$$

• If $x \in X$ is efficient, then $y = f(x)$ is *Pareto*.

• For simplicity, we work in outcome space.

• Our goal is to generate the set of all Pareto outcomes.
Illustrating Pareto Outcomes
Probing Algorithms

- A wide array of algorithms for generating Pareto outcomes have been proposed.
- We will focus on probing algorithms that scalarize the objective, i.e., replace it with a single criterion.
- Such algorithms reduce solution of a BMIP to a series of MIPs.
- The main factor in the running time is the number of probes.
- The most obvious scalarization is the weighted sum objective.
- We replace the original objective with

 \[
 \max_{y \in f(X)} \beta y_1 + (1 - \beta) y_2
 \]

 to obtain a parameterized family of MIPs.
- Such a subproblem can only generate supported outcomes.
Example: Pareto Outcomes for Cable-Trench Instance
The Weighted Chebyshev Norm

• To generate unsupported outcomes, we replace the weighted sum objective with a *weighted Chebyshev norm* (WCN) objective.

• The *Chebyshev norm* (l_∞ norm) in \mathbb{R}^2 is defined by $\|y\|_\infty = \max\{|y_1|, |y_2|\}$.

• The *weighted Chebyshev norm* with weight $0 \leq \beta \leq 1$ is defined by $\|y\|_\infty = \max\{\beta|y_1|, (1 - \beta)|y_2|\}$.

• The *ideal point* y^* is (y_1^*, y_2^*) where $y_i^* = \max_{x \in X} (f(x))_i$.

• Methods based on the WCN select outcomes with minimum WCN distance from the ideal point by solving

$$P(\beta) = \min_{y \in f(X)} \{\|y^* - y\|_\infty^\beta\}. \quad (1)$$

• Bowman (1976) showed that every Pareto outcome is a solution to (1) for some $0 \leq \beta \leq 1$.

• The converse only holds if the instance is *uniformly dominant*.
Illustrating the WCN

level line for \(\beta = .57 \)

level line for \(\beta = .29 \)

ideal point
Solving \(P(\beta) \)

- Problem (1) is equivalent to

\[
\begin{align*}
\text{minimize} & \quad z \\
\text{subject to} & \quad z \geq \beta(y_1^* - y_1), \\
& \quad z \geq (1 - \beta)(y_2^* - y_2), \text{ and} \\
& \quad y \in f(X).
\end{align*}
\] (2)

- This is a MIP, which can be solved by standard methods.
- Note that this reformulation can produce weakly dominated outcomes.
Ordering the Pareto Outcomes

- **Eswaran** (1989) suggested ordering the Pareto outcomes so that

 - $Y_E = \{y_p \mid 1 \leq p \leq N\}$, and

 - if $p < q$, then $y_1^p < y_1^q$ (and hence $y_2^p > y_2^q$).

- For any Pareto outcome y_p, if we define

 $$
 \beta_p = \frac{(y_2^* - y_2^p)}{(y_1^* - y_1^p + y_2^* - y_2^p)},
 $$

 then y^p is the unique optimal outcome for (1) with $\beta = \beta_p$.

- For any pair of Pareto outcomes y_p and y_q with $p < q$, if we define

 $$
 \beta_{pq} = \frac{(y_2^* - y_2^q)}{(y_1^* - y_1^p + y_2^* - y_2^q)},
 $$

 then y^p and y^q are both optimal outcomes for (1) with $\beta = \beta_{pq}$.

- This provides us with a notion of *adjacency* and *breakpoints*.
Breakpoints Between Pareto Outcomes with the WCN
Algorithms Based on the WCN

• **Eswaran** (1989) proposed an algorithm based on binary search over the values of β, but the number of probes can be prohibitive.

• **Solanki** (1991) proposed an algorithm to generate an approximation to the Pareto set using the WCN.

• The **Solanki** algorithm probes between pairs of known outcomes using a procedure similar to that of **Chalmet**.

• We propose an algorithm that extends Solanki’s ideas.

• The **WCN Algorithm**

 – is based on standard MILP solution techniques,
 – can produce all Pareto outcomes with $2N - 1$ probes, and
 – can produce the breakpoints between solutions.
The WCN Algorithm

Initialization Solve $P(1)$ and $P(0)$ to identify optimal outcomes y_1 and y_N, respectively, and the ideal point $y^* = (y_1^1, y_2^N)$. Set $I = \{(y_1, y_N)\}$.

Iteration While $I \neq \emptyset$ do:

1. Remove any (y^p, y^q) from I.
2. Compute β_{pq} as in (3) and solve $P(\beta_{pq})$. If the outcome is y^p or y^q, then y^p and y^q are adjacent in the list (y_1, y_2, \ldots, y_N).
3. Otherwise, a new outcome y^r is generated. Add (y^p, y^r) and (y^r, y^q) to I.

This reduces solution of the original BMIP to solution of a sequence of $2N - 1$ subproblems (under the assumption of uniform dominance).
Implementation

- A variety of algorithms for bicriteria optimization have been implemented as extensions to the SYMPHONY callable library.

- The subproblems are solved using a modified version of branch and cut.
 - The user specifies a second objective.
 - When using the WCN, SYMPHONY performs the required reformulation.
 - SYMPHONY employs one of several methods for eliminating weakly dominated solutions.

- Solver features
 - Can produce approximations to the Pareto set.
 - Implements several well-known algorithms for enumerating the Pareto set.
 - Can warm start subproblems.
 - Can maintain a global cut pool between iterations.

- Available from COIN-OR (projects.coin-or.org/SYMPHONY).
Parallelizing the WCN Algorithm

- Enumerating the entire Pareto set can be extremely difficult for hard combinatorial problems.

- The WCN algorithm is, however, naturally parallelizable.

- A simple master-worker implementation
 - The master keeps a queue of subproblems to be solved.
 - When a worker becomes free, the master picks a subproblem off the queue and sends it to the worker.
 - The worker returns either
 * Message that the subproblem is infeasible (a new breakpoint).
 * Two new subproblems to be added to the queue.
 - Continue until the queue is empty.

- This algorithm is a perfect candidate for solving on the computational grid.
 - It is coarse-grained and asynchronous.
 - Subproblem descriptions consist of only a few parameters.
 - Only the list of breakpoints and solutions generated so far are needed to restart.
Implementing the Parallel WCN Algorithm

- The algorithm was parallelized using MWBlackBox, a tool for deploying simple master-worker algorithms on the computational grid.

- MWBlackBox is built on top of Condor, a unique full-featured task management system.

- Condor is used to remotely run a subproblem solver implemented using the SYMPHONY callable library.

- Required methods
 - `getuserinfo()`: Specify file locations
 - `setup_initial_tasks()`: Find utopia point
 - `act_on_completed_task()`: Generate new subproblems
 - `printresults()`: Print final results
Scalability Issues

- The scalability issues are very similar to parallel branch and bound.
 - There is a queue of independent tasks to be done.
 - Each task may generate two child tasks, but there is no way of knowing a priori what the tree of tasks will look like.
 - The order of processing the tasks does not matter for correctness, but can greatly affect parallel performance.

- The main scalability factors
 - The number of outcomes and their distribution.
 - How fast the queue grows in the beginning and shrinks at the end.
 - If warm starting or a global cut pool is used, the processing order may also affect subproblem solution time.

- To test scalability of the basic algorithm, we solved 32 instances of the multicriteria knapsack problem with different numbers of available processors.
Example: Pareto Set for W1C80W04
Example: Queue Size for W1C80W04

Evolution of Subproblem Queue

Number of Subproblems

Time

- Finished
- Running
- In Queue
Computational Results: Processor Utilization

Utilization as a Function of Number of Processors

Processor Utilization

Instances

PP-20
PP-10
PP-5
Future Work: Improving Parallel Performance

- Limiting ramp-up and ramp-down time
 - Solution of subproblems can itself be parallelized when the queue is small.
 - Searching the widest intervals first may help populate the queue more quickly.
 - Subintervals could be allocated to processors a priori without solving any initial subproblems.

- More asynchronicity can be introduced by allowing each worker to search an entire interval recursively.

- Maintaining warm starting information
 - For very large instances, warm starting can help a lot.
 - However, this means the subproblem descriptions will become much larger.
 - One option is to store the warm starts locally.

- Cuts can be shared through the use of a global cut pool.
Conclusion

• Generating the complete set of Pareto outcomes is a challenging computational problem.

• We presented a new algorithm for solving biobjective mixed-integer programs.

• The algorithm is
 – asymptotically optimal,
 – generates exact breakpoints,
 – has good numerical properties, and
 – can exploits modern solution techniques.

• We have shown how this algorithm is implemented in the SYMPHONY MILP solver framework.

• Future work
 – Improvements to warm starting procedures
 – Improvements to the parallelization scheme
 – More than two objective
More Information

• SYMPHONY
 – Prepackaged releases can be obtained from www.BranchAndCut.org.
 – Up-to-date source is available from www.coin-or.org.
 – Available Solvers
 - Generic MILP
 - Traveling Salesman Problem
 - Vehicle Routing Problem
 - Mixed Postman Problem
 - Biobjective Knapsack Solver
 - Set Partitioning Problem
 - Matching Problem
 - Network Routing

• For references and further details, see An Improved Algorithm for Biobjective Integer Programming, to appear in Annals of OR, available from

 www.lehigh.edu/~tkr2

• Overviews of multiobjective integer programming
 – Climaco (1997)
 – Ehrgott and Wiecek (2005)
Quick Example

\[
v_{\text{max}} \quad [8x_1, x_2] \\
s.t. \quad 7x_1 + x_2 \leq 56 \\
\quad 28x_1 + 9x_2 \leq 252 \\
\quad 3x_1 + 7x_2 \leq 105 \\
\quad x_1, x_2 \geq 0
\]
Relaxing the Uniform Dominance Requirement

- Dealing with weakly dominated outcomes is the most challenging aspect of these methods.
- We need a method of preventing $P(\beta)$ from producing weakly dominated outcomes.
- Weakly dominated outcomes are the same WCN distance from the ideal point as the outcomes they are dominated by.
- However, they are farther from the ideal point as measured by the l_p norm for $p < \infty$.
- One solution is to replace the WCN with the augmented Chebyshev norm (ACN), defined by

$$\|(y_1, y_2)\|_\infty^{\beta, \rho} = \max\{\beta|y_1|, (1 - \beta)|y_2|\} + \rho(|y_1| + |y_2|),$$

where ρ is a small positive number.
Illustrating the ACN

\[\theta_1, \theta_2 \]

Augmented level line

\[y_p, y_q, y_r \]
Solving $P(\beta)$ with the ACN

- The problem of determining the outcome closest to the ideal point under this metric is

\[
\begin{align*}
\min & \quad z + \rho(|y^*_1 - y_1| + |y^*_2 - y_2|) \\
\text{subject to} & \quad z \geq \beta(y^*_1 - y_1) \\
& \quad z \geq (1 - \beta)(y^*_2 - y_2) \\
& \quad y \in f(X).
\end{align*}
\]

(4)

- Because $y^*_k - y_k \geq 0$ for all $y \in f(X)$, the objective function can be rewritten as

\[
\min z - \rho(y_1 + y_2).
\]

- For fixed $\rho > 0$ small enough:
 - all optimal outcomes for problem (4) are Pareto (in particular, they are not weakly dominated), and
 - for a given Pareto outcome y for problem (4), there exists $0 \leq \hat{\beta} \leq 1$ such that y is the unique outcome to problem (4) with $\beta = \hat{\beta}$.

- In practice, choosing a proper value for ρ can be problematic.
Combinatorial Method for Eliminating Weakly Dominated Solutions

• In the case of biobjective linear integer programs (BLIPs), we can employ combinatorial methods.

• Such a strategy involves implicitly enumerating alternative optimal solutions to $P(\beta)$.

• Weakly dominated outcomes are eliminated with cutting planes during the branch and bound procedure.

• Instead of pruning nodes that yield feasible outcomes immediately, we continue to search for alternative optima that dominate the current incumbent.

• To do so, we determine which of the two constraints

$$
\begin{align*}
 z & \geq \beta(y_1^* - y_1) \\
 z & \geq (1 - \beta)(y_2^* - y_2)
\end{align*}
$$

from problem (1) is binding at \hat{y}.
Combinatorial Method for Eliminating Weakly Dominated Solutions (cont’d)

• Let ϵ_1 and ϵ_2 be such that if y_r is a new outcome between y^p and y^q, then $y_i^r \geq \min\{y^p_i, y^q_i\} + \epsilon_i$, for $i = 1, 2$.

• If the first constraint is binding, then the cut

$$y_1 \geq \hat{y}_1 + \epsilon_1$$

is valid for any outcome that dominates \hat{y}.

• If the second constraint is binding, then the cut

$$y_2 \geq \hat{y}_2 + \epsilon_2$$

is valid for any outcome that dominates \hat{y}.
Hybrid Methods

• In practice, the ACN method is fast, but choosing the proper value of ρ is problematic.

• Combinatorial methods are less susceptible to numerical difficulties, but are slower.

• Combining the two methods improves running times and reduces dependence on the magnitude of ρ.
Other Enhancements to the Algorithm

- In Step 2, any new outcome y^r will have $y^r_1 > y^p_1$ and $y^r_2 > y^q_2$.
- If no such outcome exists, then the subproblem solver must still re-prove the optimality of y^p or y^q.
- Then it must be the case that
 \[
 \|y^* - y^r\|_\infty^{\beta_{pq}} + \min\{\beta_{pq}\epsilon_1, (1 - \beta_{pq})\epsilon_2\} \leq \|y^* - y^p\|_\infty^{\beta_{pq}} = \|y^* - y^q\|_\infty^{\beta_{pq}}
 \]
- Hence, we can impose an a priori upper bound of
 \[
 \|y^* - y^p\|_\infty^{\beta_{pq}} - \min\{\beta_{pq}\epsilon_1, (1 - \beta_{pq})\epsilon_2\}
 \]
 when solving the subproblem $P(\beta_{pq})$.
- With this upper bound, each subproblem will either be infeasible or produce a new outcome.
Using Warm Starting

- We have been developing methodology for \textit{warm starting} branch and bound computations.

- Because the WCN algorithm involves solving a sequence of slightly modified MILPs, warm starting can be used.

- \textbf{Three approaches}
 - Warm start from the result of the previous iteration.
 - Solve a “base” problem first and warm each subsequent problem from there.
 - Warm start from the “closest” previously solved subproblem.

- In addition, we can optionally save the global cut pool from iteration to iteration.
Implementation: Code Sample

• Recall the example from earlier:

\[
\text{vmax} \quad [8x_1, x_2] \\
\text{s.t.} \quad 7x_1 + x_2 \leq 56 \\
\quad \quad 28x_1 + 9x_2 \leq 252 \\
\quad \quad 3x_1 + 7x_2 \leq 105 \\
\quad \quad x_1, x_2 \geq 0
\]

• The following code solves this model using SYMPHONY.

```cpp
int main(int argc, char **argv)
{
    OsiSymSolverInterface si;
    si.parseCommandLine(argc, argv);
    si.setObj2Coeff(1, 1);
    si.loadProblem();
    si.multiCriteriaBranchAndBound();
}
```
Uniform Dominance

- Members of X that are not strongly dominated by some efficient solution are called weakly dominated.
- Weakly dominated solutions are optimal to (1) for some β.
- If X does not contain any weakly dominated solutions, then the instance is said to be uniformly dominant.
- The assumption of uniform dominance simplifies computation substantially, but is not satisfied in most practical settings.
- The deal with this, we need to modify the algorithm.
Computational Results: WCN versus Bisection Search

Bisection Search Iterations

Accuracy of Bisection Search
Computational Results: Accuracy of ACN

Accuracy of ACN

Solutions Missed

Instances

Knap-10 Knap-20 Knap-30 Knap-40 Knap-50 CNRP att48

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

ACN(.01) ACN(.001) ACN(.0001)
Computational Results: Running Time Comparison

WCN versus ACN and Hybrid ACN

Running Time Decrease

Instances
Computational Results: Using Warm Starting to Solve CNRP Instances

These are results using SYMPHONY to solve CNRP instances with two different warm starting strategies.