
ALPS: A Framework for Implementing Parallel Search

Algorithms

Y. Xu∗, T. K. Ralphs†, L. Ladányi‡, and M. J. Saltzman§

May 13, 2004

Abstract

ALPS is a framework for implementing and parallelizing tree search algorithms. It employs
a number of features to improve scalability and is designed specifically to support the imple-
mentation of data intensive algorithms, in which large amounts of knowledge are generated and
must be maintained and shared during the search. Implementing such algorithms in a scalable
manner is challenging both because of storage requirements and because of communications
overhead incurred in the sharing of data. In this abstract, we describe the design of ALPS and
how the design addresses these challenges. We present two sample applications built with ALPS
and preliminary computational results.

1 Introduction

Tree search algorithms are a general class in which the nodes of a directed, acyclic graph are system-
atically searched in order to locate one or more goal nodes. In most cases, the graph to be searched
is not known a priori, but is constructed dynamically based on information discovered during the
search process. We assume the graph has a unique root node with no incoming arcs, which is the
first node to be examined. In this case, the search order uniquely determines a rooted tree called
the search tree. Although tree search algorithms are easy to parallelize in principle, the absence of
a priori knowledge of the shape of the tree and the need to effectively share information generated
during the search makes such parallelization challenging and scalability difficult to achieve. In [31]
and [32], we examined the issues surrounding parallelization of tree search algorithms and presented
a high-level description of a class hierarchy for implementing such algorithms. In this abstract, we
follow up on those works by presenting further details of the search handling layer of the proposed
hierarchy, called the Abstract Library for Parallel Search (ALPS), which will soon have its first
public release.

∗Operations R & D, SAS Institute Inc., Cary NC 27513, Yan.Xu@sas.com
†Department of Industrial and Systems Engineering, Lehigh University, Bethlehem PA 18015,

tkralphs@lehigh.edu
‡Department of Mathematical Sciences, IBM T. J. Watson Research Center, Yorktown Heights NY 10598,

ladanyi@us.ibm.com
§Department of Mathematical Sciences, Clemson University, Clemson SC 29634, mjs@clemson.edu



A variety of existing software frameworks are based on tree search. For mixed-integer programming—
the application area we are most interested in—most packages employ a sophisticated variant of
branch and bound. Among the offerings for solving generic mixed-integer programs are bc-opt
[7], FATCOP [6], MIPO [1], PARINO [23], SIP [27], SBB [11], GLPK [25], and bonsaiG [15]. Of
this list, FATCOP and PARINO are parallel codes. Commercial offerings include ILOG’s CPLEX,
IBM’s OSL (soon to be discontinued), and Dash’s XPRESS. Generic frameworks that facilitate
extensive user customization of the underlying algorithm include SYMPHONY [30], ABACUS [17],
BCP [20], and MINTO [29], of which SYMPHONY and BCP are parallel codes. Other frameworks
for parallel branch and bound include BoB [2], PICO [9], PPBB-Lib [37], and PUBB [34]. Good
overviews and taxonomies of parallel branch and bound are provided in both [12] and [36]. Eckstein
et al. [9] also provides a good overview of the implementation of parallel branch and bound. A
substantial number of papers have been written specifically about the application of parallel branch
and bound to discrete optimization problems, including [3, 8, 13, 28].

The goal of the ALPS project is to build on the best existing methodologies while addressing
their shortcomings to produce a framework that is more general and extensible than any of the
current options. As such, we provide support for the implementation of a range of algorithms
that existing frameworks are not general enough to handle. Our design is centered around the
abstract notion of knowledge generation and sharing, which is very general and central to imple-
menting scalable versions of today’s most sophisticated tree search algorithms. Such algorithms
are inherently data-intensive, i.e., they generate large amounts of knowledge as a by-product of the
search. This knowledge must be organized, stored, and shared efficiently. ALPS provides explicit
support for these procedures and allows for user-defined knowledge types, making it easy to create
derivative frameworks for a wide range of specific classes of algorithms. While our own experience
is in developing algorithms for solving mixed-integer linear programs, we have in mind to develop
a number of additional layers providing support for tree search algorithms in other areas, such as
global optimization. Although we present limited computational results, we want to emphasize
that this research is ongoing and that the results are intended merely to illustrate the challenges
we still face. The main goal of the paper is to describe the framework itself. ALPS is being de-
veloped in association with the Computational Infrastructure for Operations Research (COIN-OR)
Foundation [24], which will host the code.

1.1 Tree Search Algorithms

In a tree search algorithm, each node in the search graph has associated data, called its description,
that can be used to determine if it is a goal node, and if it has any successors. To specify such
an algorithm, four main elements are required. The fathoming rule determines whether a node
has successors that need to be explored. The branching method specifies how to generate the
descriptions of a node’s successors. The processing method determines whether a node is a goal
node and whether it has any successors. The search strategy specifies the processing order of the
candidate nodes.

Each node has an associated status, which is one of: candidate (available for processing),
active (currently being processed), fathomed (processed and has no successors), or processed
(not fathomed, hence has successors). The search consists of repeatedly selecting a candidate node
(initially, the root node), processing it, and then either fathoming or branching. The nodes are
chosen according to priorities assigned during processing.

2



Variants of tree search algorithms are widely applied in areas such as discrete optimization,
global optimization, stochastic programming, artificial intelligence, game playing, theorem proving,
and constraint programming. One of the most common variants in discrete optimization is branch
and bound, originally suggested by Land and Doig [21]. In branch and bound, branching consists of
partitioning the feasible set into subsets. Processing consists of computing a bound on the objective
function value, usually by solving a relaxation. A node can be fathomed if (1) the solution to the
relaxation is in the original feasible set (in which case, the best such solution seen so far is recorded
as the incumbent), (2) the objective value of the solution to the relaxation exceeds the value of the
incumbent, or (3) the subset is proved to be empty.

1.2 Parallelizing Tree Search

In principle, tree search algorithms are easy to parallelize. Sophisticated variants, however, involve
the generation and sharing of large amounts of knowledge, i.e., information helpful in guiding the
search and improving the effectiveness of node processing. Inefficiencies in the mechanisms by which
knowledge is maintained and shared result in parallel overhead, which is additional work performed
in the parallel algorithm that would not have been performed in the sequential one. The goal of
any parallel implementation is to limit this overhead as much as possible.

We assume a simple model of parallel computation in which there are N processors with access
to their own local memory and complete connectivity with other processors. We further assume that
there is exactly one process per processor at all times, though this process might be multi-threaded.
The main sources of parallel overhead for tree search algorithms are:

• Communication Overhead : time spent actively sending or receiving knowledge.

• Idle Time: time spent waiting for knowledge to be transferred from another processor (in-
cluding task starvation, when the processor is waiting for more work to do).

• Redundant Work : time spent performing unnecessary work, usually due to a lack of appro-
priate global knowledge.

• Ramp-Up/Ramp-Down: idle time at the beginning/end of the algorithm during which there
is not enough work for all processors.

The effectiveness of the knowledge-sharing mechanism is the main factor affecting this overhead.
The sources of overhead listed above highlight the tradeoff between centralized storage and decision
making, which incurs increased communication and idle time, and decentralized storage and decision
making, which increases performance of redundant work. Achieving the proper balance is the
challenge we face. Scalability is a measure of how well this balance is achieved, i.e., how well
an algorithm takes advantage of increased computing resources, primarily additional processors.
Our measure of scalability is the rate of increase in overhead as additional processors are made
available. A parallel algorithm is considered scalable if this rate is near linear. An excellent general
introduction to the analysis of parallel scalability is provided in [19].

3



2 Implementation

2.1 Knowledge Sharing

In [32], building on ideas in [36], we proposed a tree search methodology driven by the concept of
knowledge discovery and sharing. We briefly review the concepts from the earlier work here. The
design of ALPS is predicated on the idea that all information required to carry out a tree search can
be represented as knowledge that is generated dynamically and stored in various local knowledge
pools (KPs), which share that knowledge when needed. A single processor can host multiple KPs
that store different types of knowledge and are managed by a knowledge broker (KB). Examples
of knowledge generated while solving mixed-integer programs include feasible solutions, search-tree
nodes, and valid inequalities.

The KB associated with a KP may field two types of requests on its behalf: (1) new knowledge
to be inserted into the KP or (2) a request for relevant knowledge to be extracted from the KP,
where “relevant” is defined for each category of knowledge with respect to data provided by the
requesting process. A KP may also choose to “push” certain knowledge to another KP, even though
no specific request has been made.

The most fundamental knowledge generated during the search is the descriptions of the search-
tree nodes themselves. The node descriptions are stored in KPs called node pools. The node
pools collectively contain the list of candidate nodes. The tradeoff between centralization and
decentralization of knowledge is most evident in the mechanism for sharing node descriptions among
the processors, known as load balancing. Effective load balancing reduces both idle time associated
with task starvation and performance of redundant work. Load balancing methods have been
studied extensively [10, 16, 18, 22, 33, 35], but many of the suggested schemes are not suited for
our framework. The simplest approach is a master-worker design that stores all node descriptions
in a single, central node pool. This makes work distribution easy, but incurs high communication
costs. This is the approach we have taken in our previous frameworks, SYMPHONY and BCP.
It works well for small numbers of processors, but does not scale well, as the central node pool
inevitably becomes a computational and communications bottleneck.

2.2 The Master-Hub-Worker Paradigm

To overcome the drawbacks of the master-worker approach, ALPS employs a master-hub-worker
paradigm, in which a layer of “middle management” is inserted between the master process and
the worker processes. In this scheme, a cluster consists of a hub, which is responsible for managing
a fixed number of workers. As the number of processes increases, we simply add more hubs and
more clusters of workers. This scheme is similar to one implemented by Eckstein et al. in the
PICO framework [9], except that PICO does not have the concept of a master. This decentralized
approach maintains many of the advantages of global decision making while reducing overhead and
moving some computational burden from the master process to the hubs. This burden is then
further shifted from the hubs to the workers by increasing the task granularity, as described below.
Cluster size is computed based on the number of hubs and the number of processors, which are set
by the user at run time.

The basic unit of work in our design is a subtree. Each worker is capable of processing an

4



entire subtree autonomously and has access to all of the methods needed to manage a tree search.
Designating a subtree as the fundamental unit of work helps to minimize memory requirements
by enabling the use of efficient data structures for storing subtrees using a differencing scheme
similar to that used in both SYMPHONY and BCP. In this scheme, node descriptions are not
stored explicitly, but rather as differences from their predecessors’ descriptions. This increased
granularity also reduces idle time due to task starvation, but, without proper load balancing, may
increase the performance of redundant work.

2.3 Load Balancing

Recall that each node has an associated priority that can be thought of as indicating the node’s
“quality,” i.e., the probability that the node or one of its successors is a goal node. In assessing
the distribution of work to the processors, we need to consider not only quantity, but also quality.
ALPS employs a three-tiered load balancing scheme, consisting of static, intra-cluster dynamic, and
inter-cluster dynamic load balancing. Static load balancing, or mapping, takes place during the
initial phase of the algorithm. The first task is to generate a group of successors of the root node
and distribute them to the workers to initialize their local node pools. ALPS uses a two-level root
initialization scheme, a generalization of the root initialization scheme of [16]. During static load
balancing, the master creates and distributes a user-specified number of nodes for hubs. The hubs
in turn create a user-specified number of successors for their workers, then the workers initialize
their subtree pools and begin.

Time spent performing static load balancing is the main source of ramp-up, which can be
significant when node processing times are large. The problem of reducing ramp-up has long
been recognized as a challenging one [12, 5, 9]. Two-level root initialization reduces ramp-up by
parallelizing the root initialization process itself. Implementation of two-level root initialization is
straightforward, but our experience has shown that it can work quite well if the number of nodes
distributed to each worker is large enough and node processing times are short.

Inside a cluster, the hub manages dynamic load balancing. Intra-cluster load balancing is ini-
tiated when an individual worker reports to the hub that its workload is below a given threshold.
Upon receiving the request, the hub asks its most loaded worker to donate a subtree to the request-
ing worker. In addition, the hub periodically checks the qualities of the workloads of its workers.
If it finds that the qualities are unbalanced, the hub asks the workers with the most high priority
nodes to share their workload with the workers that have fewer such nodes.

The master is responsible for balancing the workload among hubs, which periodically report
their workload information to the master. The master has a roughly accurate global view of the
system load and the load of each cluster at all times. If either the quantity or quality of work
is unbalanced among the clusters, the master identifies pairs of donors and receivers. Donors are
clusters whose workloads are greater than the average workload of all clusters by a given factor.
Receivers are the clusters whose workloads are smaller than the average workload by a given factor.
Donors and receivers are paired and each donor sends a subtree to its paired receiver.

A unique aspect of our load balancing scheme is that it takes account of the differencing scheme
for storing subtrees. In order to prevent subtrees from becoming too fractured for efficient storage
using differencing, we try at all times to ensure that the search-tree nodes are distributed in a
way such that the nodes stored together locally constitute connected subtrees of the search tree.

5



This means the tree structure must be taken into account when sharing nodes during the load
balancing. Candidate nodes that constitute the leaves of a subtree are grouped, and the entire
subtree is shared, rather than just the nodes themselves. To achieve this, each subtree is assigned
a priority level, defined as the average priorities of a given number of its best nodes. During load
balancing, the donor chooses the best subtree in its subtree pool and sends it to the receiver. If
a donor does not have any subtrees in its subtree pool, it splits the subtree that it is currently
exploring into two parts and sends one of them to the receiver. In this way, differencing can still
be used effectively.

2.4 Task Management

Because each process hosts a KB and several KPs, it is necessary to have a scheme for enabling multi-
tasking. In order to maintain maximum portability and to assert control over task scheduling, we
have implemented our own simple version of threading. ALPS processes are message driven—each
process devotes one thread to listening for and responding to messages at all times. Other threads
are devoted to performing computation as scheduled. Because each processor’s KB controls the
communication to and from the process, it also controls task scheduling. The KB receives external
messages, forwards them to the appropriate local KP if needed, and forwards all locally generated
messages to the appropriate remote KB. When not listening for messages, the KB schedules the
execution of computational tasks by the local KPs. The KB decides when and for how long to
process each task.

3 Class Structure

ALPS consists of a library of C++ classes from which can be derived specialized classes that define
various tree search algorithms. Figure 1 shows the ALPS class hierarchy. Each block represents
a C++ class, whose name is listed in the block. The lines ending with triangles represent inher-
itance relationships. For example, the AlpsSolutionPool, AlpsSubtreePool and AlpsNodePool
classes are derived from the class AlpsKnowledgePool. The lines ending with diamonds represent
associative relationships. For instance, AlpsKnowledge contains as a data member a pointer to
an instance of AlpsEncoded. ALPS is comprised of just three main base classes and a number of
derived and auxiliary classes. These classes support the core concept of knowledge sharing and are
described in the paragraphs below. The classes named UserXXX in the figure are those that must
be defined by the user to develop a new application. Two examples are described in Section 4.

AlpsKnowledge This is the virtual base class for any type of information that must be shared or
moved from one process to another. AlpsEncoded is an associated class that contains the encoded
or packed form of an AlpsKnowledge object. The packed form contains the data needed to describe
an object of a particular type in the form of a character string. This representation typically takes
much less memory than the object itself; hence, it is appropriate both for storage of knowledge and
for communication of knowledge between processors. The packed form is also independent of type,
which allows ALPS to deal with user-defined knowledge types. Finally, duplicate objects can be
quickly identified by hashing their packed forms. ALPS has the following four native knowledge
types:

6



AlpsKnowledgePool

AlpsSolutionPool AlpsNodePool

userSolution

AlpsKnowledge

AlpsSolution AlpsTreeNode

userTreeNode

AlpsKnowledgeBroker

AlpsNodeDesc

userNodeDesc

userModel

AlpsSubTree AlpsModel

AlpsKnowledgeBrokerSerialAlpsKnowledgeBrokerMPI

AlpsDataPoolAlpsEncoded

AlpsSubTreePool

Figure 1: The ALPS class hierarchy.

• AlpsSolution: A description of the goal state or solution to the problem being solved.

• AlpsTreeNode: Contains the data and methods associated with a node in the search graph.
Each node contains a description, which is an object of type AlpsNodeDesc, as well as the
definitions of the process and branch methods.

• AlpsModel: Contains the data describing the original problem.

• AlpsSubTree: Contains the description of a subtree, which is a hierarchy of AlpsTreeNode
objects, along with the methods needed for performing a tree search.

The first three of these classes are virtual and must be defined by the user in the context of the
problem being solved. The last class is generic and problem-independent.

AlpsKnowledgePool The role of the AlpsKnowledgePool is described in Section 2.1. There are
several derived classes that define native knowledge types. The user can define additional algorithm-

7



specific knowledge types.

• AlpsSolutionPool: The solution pools store AlpsSolution objects. These pools exist both
at the worker level—for storing solutions discovered locally—and globally at the master level.

• AlpsSubTreePool: The subtree pools store AlpsSubTree objects. These pools exist at the
hub level for storing subtrees that still contain unprocessed nodes.

• AlpsNodePool: The node pools store AlpsTreeNode objects. These pools contain the queues
of candidate nodes associated with the subtrees as they are being searched.

AlpsKnowledgeBroker This class encapsulates the communication protocol. The KB is the driver
for each processor and is responsible for sending, receiving, and routing all data that resides on
that processor. Each KP must be registered so that the KB knows how to route each specific
type of knowledge when it arrives and where to route requests for specific types of knowledge from
other KBs. This is the only class whose implementation depends on the communication protocol.
Currently, the protocols supported are a serial layer and an MPI [14] layer.

• AlpsKnowledgeBrokerMPI: A KB for multiprocessor execution via the MPI message-passing
interface.

• AlpsKnowledgeBrokerSerial: A KB for uniprocessor execution.

4 Applications and Preliminary Results

Developing an application with ALPS consists mainly of implementing derived classes, and writing
the main() function. As described in Section 3, the user must derive algorithm-specific classes from
the base classes AlpsModel, AlpsTreeNode, AlpsNodeDesc, and AlpsSolution. The user may also
want to define algorithm-specific parameters by deriving a class from AlpsParameterSet, or he
may even want to define new types of knowledge. A sample code for main() is shown in Figure 2.

4.1 Knapsack Solver

The binary knapsack problem is to select from a set of items a subset with the maximum total
profit and not exceeding a given total weight. The profit is additive. By deriving classes KnapModel,
KnapTreeNode, KnapNodeDesc, KnapSolution and KnapParameterSet, we have developed a solver
for the binary knapsack problem employing a very simple branch and bound algorithm. The nodes
of the search tree are described by subproblems obtained by fixing a subset of the items in the global
set to be either in or out of the selected subset. The branching procedure consists of selecting an
item and requiring it to be in the selected subset in one successor node and not in the other.
Processing consists of solving the knapsack problem without binary constraints (subject to the
items that are fixed) to obtain a lower bound, which is then used to determine the node’s priority
(lower is better). Fathoming occurs when the solution to the relaxation is feasible to the binary
problem or the lower bound exceeds the value of the incumbent. The search strategy is to choose
the candidate node with the lowest lower bound (best first).

8



#include Alps.h
#include AlpsUser.h // User-derived classes

int main(int argc, char* argv[])
{

UserModel model;
UserParams userPar;

#if defined(SERIAL)
AlpsKnowledgeBrokerSerial broker(argc, argv, model, userPar);

#elif defined(PARALLEL_MPI)
AlpsKnowledgeBrokerMPI broker(argc, argv, model, userPar);

#endif
broker.registerClass("MODEL", new UserModel);
broker.registerClass("SOLUTION", new UserSolution);
broker.registerClass("NODE", new UserTreeNode);
broker.search();
broker.printResult();
return 0;

}

Figure 2: Sample main function.

To illustrate the performance of the solver, we randomly generated four difficult knapsack
instances using the method described in [26]. These results are not meant to be comprehensive.
Clearly, further testing on a much larger scale is needed and complete performance results will
be reported in a full paper to follow. Testing was conducted on a Beowulf cluster with 48 dual
processor nodes. Each node has two 1.0-GHz Pentium III processors and 512 megabytes of RAM.
The operating system was Red Hat Linux 7.2. The message-passing library used was LAM/MPI.
Five trials were run for each instance, with two hubs employed when the number of processors
was eight or more. Table 1 shows the number of processors used (N), the wall-clock running time
(in seconds), the percentage idle time, the speedup (ratio of the sequential and parallel running
times), the parallel efficiency (ratio of the speedup to the number of processors), and the number of
nodes enumerated. The efficiency approximates the percentage of running time devoted to useful
work and should ideally be near one. Efficiencies significantly below one indicate the presence of
overhead. We used SBB [11] to produce the sequential running times for comparison. Because our
solver does not employ advanced techniques such as dynamic cut generation or primal heuristics,
we disabled these capabilities with SBB as well. SBB still generated many fewer search-tree nodes
due to its use of strong branching. Nonetheless, the comparison provides a useful baseline. From
Table 1, we see that the speedup is near linear. Ramp-up time is negligible, but idle time still
leaves room for improvement. The number of nodes enumerated is not increasing, which indicates
that the performance of redundant work is not a problem.

4.2 Mixed-integer Linear Program Solver

For the knapsack solver, node processing times were negligible and good feasible solutions were
discovered early in the solution process, which makes scalability relatively easy to achieve. As a

9



N Wall-clock Ramp-up Idle Speedup Efficiency Nodes
1 1335 – – – – 254 k
4 296 0% 2.9% 4.5 1.13 85 m
8 160 0% 2.6% 8.3 1.04 85 m

16 94 0% 7.8% 14.2 0.89 85 m
32 53 0% 7.9% 26.3 0.83 85 m

Table 1: Overall results on four knapsack instances.

Problem N Wall-clock Ramp-up Idle Speedup Eff Nodes
gesa3 1 1626 – – – – 403
gesa3 4 614 9.8% 0 2.6 0.66 445
gesa3 8 269 35.1% 0.2% 6.0 0.76 337
gesa3 16 161 49.1% 0.1% 10.1 0.63 247
blend2 1 1565 – – – – 2339
blend2 4 258 12.8% 0 6.1 1.53 1019
blend2 8 213 14.0% 0.2% 7.3 0.92 717
blend2 16 129 34.1% 0 12.1 0.76 980
fixnet6 1 2716 – – – – 2729
fixnet6 4 703 1.0% 0 3.9 0.98 3598
fixnet6 8 626 3.0% 0.2% 4.3 0.54 4703
fixnet6 16 376 4.6% 0 7.2 0.45 6570
cap6000 1 4287 – – – – 6129
cap6000 4 1344 0.2% 0 3.2 0.80 9551
cap6000 8 1012 0.3% 0 4.2 0.53 12363
cap6000 16 640 1.2% 0.2% 6.7 0.42 14121

Table 2: Computational results of sample MILP problems.

more stringent test, we have developed a generic solver for mixed-integer linear programs (MILPs)
called ALPS Branch and Cut (ABC), employing a straightforward branch and cut algorithm with
cuts generated using the COIN-OR Cut Generation Library [24]. ABC consists of the classes
AbcModel, AbcTreeNode, AbcNodeDesc, AbcSolution, and AbcParameterSet. The search strategy
is best first. Strong branching is used to choose the variables to be branched on. ABC also uses
the SBB rounding heuristic as a primal heuristic.

We tested ABC using four problems: gesa3, blend2, fixnet6, and cap6000 from MIPLIB3 [4].
As above, these results are meant to be illustrative, not comprehensive. As with the knapsack
example, two hubs were used when the number of processes was eight or more. The results are
summarized in Table 2.

From Table 2, we see that for generic MILPs, parallel efficiency is not as easy to achieve.
However, the source of overhead is quite problem dependent. For gesa3 and blend2, ramp-up is a
major problem, due to large node processing time near the top of the tree. Neither gesa3 nor blend2
exhibits signs of the performance of redundant work. Also, as the number of processors increases,
the number of search nodes decreases. This is primarily due to the fact that good feasible solutions

10



are found early in the search process. For fixnet6 and cap6000, ramp-up is not a problem, but
the number of nodes processed increases when the number of processes increases, indicating the
presence of redundant work. For these problems, good feasible solutions are not found until much
later in the search process. These results illustrate the challenges that we still face in improving
scalability. We discuss prospects for the future in the final section.

5 Summary and Future Work

In this paper, we have described the main features of the ALPS framework. Two applications were
developed to test ALPS. The limited computational results highlight the challenges we still face
in achieving scalability. The preliminary results obtained for ABC highlight the two most difficult
scalability issues to address for MILP—reduction of ramp-up time and elimination of redundant
work. Controlling ramp-up time is the most difficult of these. Attempts to branch early in order
to produce successors more quickly have thus far been unsuccessful. A number of other ideas have
been suggested in the literature. Two that we are currently exploring are (1) using a branching
procedure that creates a large number of successors instead of just the current two, and (2) utilizing
the processors idle during ramp-up in order to find a good initial feasible solution, thereby helping
to eliminate redundant work. The first approach seems unlikely to be successful, but the second one
may hold the key. This approach is also being explored by Eckstein et al. in the context of PICO.
As for eliminating redundant work, this can be done by fine-tuning our load balancing strategies,
which are currently relatively unsophisticated, to ensure a better distribution of high-priority work.

In future work, we will continue to improve the performance of ALPS by refining our methods
of reducing parallel overhead as discussed above. Also, we will continue development of the Branch,
Constrain, and Price Software (BiCePS) library, the data handling layer for solving mathematical
programs that we are building on top of ALPS. BiCePS will introduce dynamically generated cuts
and variables as new types of knowledge and support the implementation of parallel branch and
bound algorithms in which the bounds are obtained by Lagrangian relaxation. Finally, we will build
the BiCePS Linear Integer Solver (BLIS) on top of BiCePS. BLIS will be a LP-based branch, cut,
and price solver for MILPS, like ABC, but with user customization features akin to SYMPHONY
and BCP.

Acknowledgments This research was partially supported through NSF grant ACI-0102687 and
the IBM Faculty Partnership Program.

References

[1] E. Balas, S. Ceria, and G. Cornuéjols. Mixed 0-1 programming by lift-and-project in a branch-
and-cut framework. Management Science, 42:1229–1246, 1996.

[2] M. Benchouche, V.-D. Cung, S. Dowaji, B. Le Cun, T. Mautor, and C. Roucairol. Building a
parallel branch and bound library. In Solving Combinatorial Optimization Problems in Parallel.
Springer, Berlin, 1996.

11



[3] R. Bixby, W. Cook, A. Cox, , and E.K. Lee. Parallel mixed integer programming. Research
Monograph CRPC-TR95554, Rice University Center for Research on Parallel Computation,
1995.

[4] R.E. Bixby, S. Ceria, C.M. McZeal, and M.W.P. Savelsbergh. An updated mixed integer
programming library: MIPLIB 3. Technical Report TR98-03, Department of Computational
and Applied Mathematics, Rice University, 1998.

[5] B. Borbeau, T.G. Crainic, and B. Gendron. Branch-and-bound parallelization strategies ap-
plied to a depot location and container fleet management problem. Parallel Computing, 26:27–
46, 2000.

[6] Q. Chen and M. C. Ferris. FATCOP: A fault tolerant Condor-PVM mixed integer program
solver. SIAM Journal on Optimization, 11:1019–1036, 2001.

[7] C. Cordier, H. Marchand, R. Laundy, and L. A. Wolsey. bc-opt: A branch-and-cut code for
mixed integer programs. Mathematical Programming, 86:335–353, 1999.

[8] R. Correa and A. Ferreira. Parallel best-first branch and bound in discrete optimization: A
framework. Technical Report 95-03, Center for Discrete Mathematics and Theoretical Com-
puter Science, 1995.

[9] J. Eckstein, C. A. Phillips, and W. E. Hart. Pico: An object-oriented framework for parallel
branch and bound. Technical Report RRR 40-2000, Rutgers University, 2000.

[10] C. Fonlupt, P. Marquet, and J. Dekeyser. Data-parallel load balancing strategies. Parallel
Computing, 24:1665–1684, 1998.

[11] J. Forrest. Simple branch and bound, 2004. Available from http://www.coin-or.org.

[12] B. Gendron and T.G. Crainic. Parallel branch and bound algorithms: Survey and synthesis.
Operations Research, 42:1042–1066, 1994.

[13] A. Grama and V. Kumar. Parallel search algorithms for discrete optimization problems. ORSA
Journal on Computing, 7:365–385, 1995.

[14] W. Gropp, E. Lusk, and A. Skjellum. Using MPI. MIT Press, Cambridge, MA, USA, 2nd
edition, 1999.

[15] L. Hafer. bonsaiG: Algorithms and design. Technical Report SFU-CMPTTR 1999-06, Simon
Frazer University Computer Science, 1999.

[16] D. Henrich. Initialization of parallel branch-and-bound algorithms. In Second International
Workshop on Parallel Processing for Artificial Intelligence(PPAI-93), 1993.

[17] M. Jünger and S. Thienel. The abacus system for branch and cut and price algorithms in integer
programming and combinatorial optimization. Software Practice and Experience, 30:1325–
1352, 2001.

[18] V. Kumar, A. Y. Grama, and Nageshwara Rao Vempaty. Scalable load balancing techniques
for parallel computers. Journal of Parallel and Distributed Computing, 22:60–79, 1994.

12



[19] V. Kumar and A. Gupta. Analyzing scalability of parallel algorithms and architectures. Journal
of Parallel and Distributed Computing, 22:379–391, 1994.

[20] L. Ladányi and T.K. Ralphs. COIN/BCP User’s Manual, 2001. Available from
http://www.coin-or.org.

[21] A. H. Land and A. G. Doig. An automatic method for solving discrete programming problems.
Econometrica, 28:497–520, 1960.

[22] P. S. Laursen. Can parallel branch and bound without communication be effective? SIAM
Journal on Optimization, 4:33–33, May, 1994.

[23] J. Linderoth. Topics in Parallel Integer Optimization. PhD thesis, School of Industrial and
Systems Engineering, Georgia Institute of Technology, Atlanta, GA, 1998.

[24] R. Lougee-Heimer. The Common Optimization INterface for Operations Research. IBM
Journal of Research and Development, 47:57–66, 2003.

[25] A. Makhorin. Introduction to GLPK, 2004. Available from
http://www.gnu.org/software/glpk/glpk.html.

[26] S. Martello and P. Toth. Knapsack Problems: algorithms and computer implementation. John
Wiley & Sons, Inc., USA, 1st edition, 1990.

[27] A. Martin. Integer programs with block structure. Habilitation Thesis, Technical University
of Berlin, Berlin, Germany, 1998.

[28] G. Mitra, I. Hai, and M.T. Hajian. A distributed processing algorithm for solving integer
programs using a cluster of workstations. Parallel Computing, 23:733–753, 1997.

[29] G. L. Nemhauser, M. W. P. Savelsbergh, and G. S. Sigismondi. Minto, a mixed integer
optimizer. Operations Research Letters, 15:47–58, 1994.

[30] T.K. Ralphs. SYMPHONY Version 4.0 User’s Manual, 2004. Available from
http://www.branchandcut.org/SYMPHONY.

[31] T.K. Ralphs, L. Ladányi, and M. J. Saltzman. Parallel branch, cut, and price for large-scale
discrete optimization. Mathematical Programming, 98:253–280, 2003.

[32] T.K. Ralphs, L. Ladányi, and M. J. Saltzman. A library hierarchy for implementing scalable
parallel search algorithms. The Journal of Supercomputing, 28:215–234, 2004.

[33] P. Sanders. Tree shaped computations as a model for parallel applications. In ALV’98 Work-
shop on application based load balancing, pages 123–132, 1998.

[34] Y. Shinano, K. Harada, and R. Hirabayashi. A generalized utility for parallel branch and
bound algorithms. In Proceedings of the 1995 Seventh Symposium on Parallel and Distributed
Processing, pages 392–401, Los Alamitos, CA, 1995. IEEE Computer Society Press.

[35] A. Sinha and L. V. Kalé. A load balancing strategy for prioritized execution of tasks. In
Seventh International Parallel Processing Symposium, pages 230–237, Newport Beach, CA.,
1993.

13



[36] H. W. J. M. Trienekens and A. de Bruin. Towards a taxonomy of parallel branch and bound
algorithms. Report EUR-CS-92-01, Erasmus University, Rotterdam, 1992.

[37] S. Tschoke and T. Polzer. Portable Parallel Branch and Bound Library User Manual: Library
Version 2.0. Department of Computer Science, University of Paderborn, 1998.

14


