Reading for This Lecture

- C&T Chapter 16
Monte Carlo Methods

• We now consider the following very general stochastic program

\[\min_{x \in S} \{ f(x) \equiv \mathbb{E}[F(x, \xi)] \}, \quad (1) \]

where \(\xi \) is a random vector on the probability space \((\Omega, P)\), as usual.

• The standard two-stage stochastic program with recourse we have been considering is a special case of (1).

 \begin{itemize}
 \item \(S \equiv \{ x \mid Ax = b, \ x \geq 0 \} \)
 \item \(f(x) \equiv c^T x + Q(x) \)
 \item \(Q(x) \equiv \mathbb{E}[Q(x, \omega)] \)
 \item \(Q(x, \omega) \equiv \min_{y \geq 0} \{ q(\omega)^T y \mid W y = h(\omega) - T(\omega)x \} \)
 \end{itemize}

• The methodology we consider here holds for more general SPs, however.

Sampling

- Instead of solving (1), we solve an approximating problem.
- Let ξ^1, \ldots, ξ^N be N independent realizations of the random variable ξ:

$$\min_{x \in S} \{ \hat{f}_N(x) \equiv N^{-1} \sum_{j=1}^{N} F(x, \xi^j) \}.$$

- $\hat{f}_N(x)$ is the *sample average* function.
- $\hat{f}_N(x)$ is an unbiased estimator of $f(x)$, i.e.,

$$\mathbb{E}[\hat{f}_N(x)] = f(x)$$
Sample Variance

• Since ξ^j are independent, we can estimate $\text{Var}(\hat{f}_N(x))$.

• This is done using the sample variance:

$$\hat{\sigma}^2(x) = \frac{1}{N(N - 1)} \sum_{j=1}^{N} [(F(x, \xi^j) - \hat{f}_N(x))^2]$$
Statistics Break

- Let \(\chi_1, \chi_2, \ldots, \chi_n \) be independent, identically distributed (iid) random variables.

- Let \(S_n = \sum_{i=1}^{n} \chi_i \).

- Assume \(\mu \equiv \mathbb{E}[|\chi_i|] < \infty \).

Weak Law of Large Numbers

\[
\lim_{n \to \infty} P\left(\left| \frac{S_n}{n} - \mu \right| \geq \delta \right) = 0 \quad \forall \delta > 0
\]
Strong Law of Large Numbers

\[\lim_{n \to \infty} \frac{S_n}{n} \to \mu \quad \text{Almost surely} \]

- *Almost surely* means “with probability 1”, or..

\[P(\lim_{n \to \infty} \frac{S_n}{n} \neq \mu) = 0 \]
Central Limit Theorem

Further, assume that $\chi_1, \chi_2, \ldots, \chi_n$ have finite nonzero variance σ^2:

$$\lim_{n \to \infty} P \left(\frac{S_n - n\mu}{\sigma \sqrt{n}} \leq x \right) = \mathcal{N}(0, 1)$$

$\mathcal{N}(\mu, \sigma^2)$: Normally distributed random variable with mean μ, variance σ^2.
A More Convenient Form of the CLT

\[\frac{S_n - n\mu}{\sigma \sqrt{n}} \approx \mathcal{N}(0, 1) \]

\[\sqrt{n} \left(\frac{\bar{X} - \mu}{\sigma} \right) \approx \mathcal{N}(0, 1) \]

\[\sqrt{n}(\bar{X} - \mu) \approx \mathcal{N}(0, \sigma^2) \]
Lower Bound on the Optimal Objective Function Value

\[v^* = \min_{x \in S} \{ f(x) \equiv \mathbb{E}[F(x, \xi)] \} \]

For some sample \(\xi^1, \ldots, \xi^N \), let

\[\hat{v}_N = \min_{x \in S} \{ \hat{f}_N(x) \equiv N^{-1} \sum_{i=1}^{N} F(x, \xi^i) \}. \]

Theorem 1.

\[\mathbb{E}[\hat{v}_N] \leq v^* \]
Proof

\[v^* = \min_{x \in S} \mathbb{E}[F(x, \xi)] = \min_{x \in S} \mathbb{E} \left[N^{-1} \sum_{i=1}^{N} F(x, \xi^i) \right] \]

\[\min_{x \in S} N^{-1} \sum_{i=1}^{N} F(x, \xi^i) \leq N^{-1} \sum_{i=1}^{N} F(x, \xi^i) \quad \forall x \in S \quad \iff \]

\[\mathbb{E} \left[\min_{x \in S} N^{-1} \sum_{i=1}^{N} F(x, \xi^i) \right] \leq \mathbb{E} \left[N^{-1} \sum_{i=1}^{N} F(x, \xi^i) \right] \quad \forall x \in S \iff \]

\[\mathbb{E} [\hat{v}_N] \leq \mathbb{E} \left[N^{-1} \sum_{i=1}^{N} F(x, \xi^i) \right] \quad \forall x \in S \iff \]

\[\mathbb{E} [\hat{v}_N] \leq \min_{x \in S} \mathbb{E} \left[N^{-1} \sum_{i=1}^{N} F(x, \xi^i) \right] = v^* \]
Now we need to somehow estimate $\mathbb{E}[\hat{v}_n]$.

The expected value $\mathbb{E}[\hat{v}_N]$ can be estimated as follows.

Generate M independent samples, $\xi^{1,j}, \ldots, \xi^{N,j}, j = 1, \ldots, M$, each of size N, and solve the corresponding sample average approximation (SAA) problems

$$
\min_{x \in S} \left\{ \hat{f}_N^j(x) := N^{-1} \sum_{i=1}^{N} F(x, \xi^{i,j}) \right\},
$$

for each $j = 1, \ldots, M$. Let \hat{v}_N^j be the optimal value of problem (2), and compute

$$
L_{N,M} \equiv \frac{1}{M} \sum_{j=1}^{M} \hat{v}_N^j
$$
Lower Bounds

• The estimate $L_{N,M}$ is an unbiased estimate of $\mathbb{E}[\hat{v}_N]$.

• By our last theorem, it provides a statistical lower bound for the true optimal value v^*.

• When the M batches $\xi^{1,j}, \xi^{2,j}, \ldots, \xi^{N,j}$, $j = 1, \ldots, M$, are i.i.d., we have by the Central Limit Theorem that

$$\sqrt{M} \left[L_{N,M} - \mathbb{E}[\hat{v}_N] \right] \to \mathcal{N}(0, \sigma_L^2)$$
Confidence Intervals

- The sample variance estimator of σ_L^2 is

$$s_L^2(M) \equiv \frac{1}{M-1} \sum_{j=1}^{M} \left(\hat{v}_N^j - L_{N,M} \right)^2.$$

Defining z_α to satisfy $P\{N(0,1) \leq z_\alpha\} = 1 - \alpha$, and replacing σ_L by $s_L(M)$, we obtain an approximate $(1 - \alpha)$-confidence interval for $\mathbb{E}[\hat{v}_N]$:

$$\left[L_{N,M} - \frac{z_\alpha s_L(M)}{\sqrt{M}}, L_{N,M} + \frac{z_\alpha s_L(M)}{\sqrt{M}} \right]$$
Example

minimize

\[Q(x_1, x_2) = x_1 + x_2 + 5 \int_{\omega_1=1}^{4} \int_{\omega_2=1/3}^{2/3} y_1(\omega_1, \omega_2) + y_2(\omega_1, \omega_2) \, d\omega_1 \, d\omega_2 \]

subject to

\[
\begin{align*}
\omega_1 x_1 + x_2 + y_1(\omega_1, \omega_2) & \geq 7 \\
\omega_2 x_1 + x_2 + y_2(\omega_1, \omega_2) & \geq 4 \\
x_1 & \geq 0 \\
x_2 & \geq 0 \\
y_1(\omega_1, \omega_2) & \geq 0 \\
y_2(\omega_1, \omega_2) & \geq 0
\end{align*}
\]
Upper Bounds

\[v^* = \min_{x \in S} \{ f(x) \equiv \mathbb{E}[F(x, \xi)] \} \]

• From this definition, it is obvious that

\[f(x) \geq v^* \quad \forall x \in S \]

• How can we estimate \(f(\hat{x}) \) for some \(\hat{x} \in S \)?
Estimating $f(\hat{x})$

- Consider $\hat{x} \in S$.
- We generate T independent batches of samples of size \bar{N}, denoted by $\xi^{1,j}, \xi^{2,j}, \ldots, \xi^{\bar{N},j}$, $j = 1, \ldots, T$.
- Each batch has the unbiased property, namely

\[
\mathbb{E} \left[\hat{f}^{j}_{\bar{N}}(x) \right] = \bar{N}^{-1} \sum_{i=1}^{\bar{N}} F(x, \xi^{i,j}) = f(x), \text{ for all } x \in S.
\]
- We can then use the average value defined by

\[
U_{\bar{N},T}(\hat{x}) \equiv \bar{T}^{-1} \sum_{j=1}^{T} \hat{f}^{j}_{\bar{N}}(\hat{x})
\]

as an estimate of $f(\hat{x})$.
More Confidence Intervals

By applying the Central Limit Theorem again, we have that

\[
\sqrt{T} \left[U_{\bar{N},T}(\hat{x}) - f(\hat{x}) \right] \to N(0, \sigma^2_U(\hat{x})), \quad \text{as } T \to \infty,
\]

where \(\sigma^2_U(\hat{x}) \equiv \text{Var} \left[\hat{f}_{\bar{N}}(\hat{x}) \right] \). We can estimate \(\sigma^2_U(\hat{x}) \) by the sample variance estimator \(s^2_U(\hat{x},T) \) defined by

\[
s^2_U(\hat{x},T) \equiv \frac{1}{T-1} \sum_{j=1}^T \left[\hat{f}_{\bar{N}}^j(\hat{x}) - U_{\bar{N},T}(\hat{x}) \right]^2.
\]

By replacing \(\sigma^2_U(\hat{x}) \) with \(s^2_U(\hat{x},T) \), we can proceed as above to obtain a \((1 - \alpha)\)-confidence interval for \(f(\hat{x}) \):

\[
\left[U_{\bar{N},T}(\hat{x}) - \frac{z_\alpha s_U(\hat{x},T)}{\sqrt{T}}, U_{\bar{N},T}(\hat{x}) + \frac{z_\alpha s_U(\hat{x},T)}{\sqrt{T}} \right].
\]
Putting it all together

- $\hat{f}_N(x)$ is the sample average function
 - Draw $\omega^1, \ldots, \omega^N$ from P
 - $\hat{f}_N(x) \equiv N^{-1} \sum_{j=1}^{N} F(x, \omega^j)$
 - For stochastic LP w/recourse \Rightarrow solve N LPs.

- $\hat{v}_N \equiv \min_{x \in S} \left\{ \hat{f}_N(x) \equiv N^{-1} \sum_{j=1}^{N} F(x, \omega^j) \right\}$ is the optimal solution value for the sample average function.

- Estimate $\mathbb{E}[\hat{v}_N]$ as $\mathbb{E}[\hat{v}_N] = L_{N,M} = M^{-1} \sum_{j=1}^{M} \hat{v}_N^j$ (solve M stochastic LPs, each of sampled size N).
Recapping Theorems

Theorem 2. \[\mathbb{E}[\hat{v}_N] \leq v^* \leq f(x) \quad \forall x \in S \]

Theorem 3. \[U_{\bar{N},\bar{T}}(\hat{x}) - L_{N,M}[\hat{v}_N] \rightarrow f(\hat{x}) - v^*, \text{ as } N, M, \bar{N}, \bar{T} \rightarrow \infty \]

- We are mostly interested in estimating the quality of a given solution \(\hat{x} \). This is \(f(\hat{x}) - v^* \).
- \(\hat{f}_{N'}(\hat{x}) \) computed by solving \(N' = \bar{N}T \) independent LPs.
- \(\mathbb{E}[\hat{v}_N] \) computed by solving \(M \) independent stochastic LPs.
An Experiment

- Solve a stochastic sampled approximation of size NM times (thus obtaining an estimate of $E[\hat{v}_N]$).

- For each of the M solutions $x^i, i = 1, \ldots, M$, estimate $f(x^i)$ by solving $N' = \tilde{N}T$ LPs.

- Test Instances

| Name | Application | $|\Omega|$ | (m_1, n_1) | (m_2, n_2) |
|------|------------------------------|------------|--------------|--------------|
| LandS| HydroPower Planning | 10^6 | (2,4) | (7,12) |
| gbd | ? | 6.46×10^5 | (?,?) | (?,?) |
| storm| Cargo Flight Scheduling | 6×10^{81} | (185, 121) | (?,1291) |
| 20term| Vehicle Assignment | 1.1×10^{12} | (1,5) | (71,102) |
| ssn | Telecom. Network Design | 10^{70} | (1,89) | (175,706) |
Convergence of Optimal Solution Value

- $9 \leq M \leq 12$, $N' = 10^6$
- Monte Carlo Sampling

<table>
<thead>
<tr>
<th>Instance</th>
<th>$N = 50$</th>
<th>$N = 100$</th>
<th>$N = 500$</th>
<th>$N = 1000$</th>
<th>$N = 5000$</th>
</tr>
</thead>
<tbody>
<tr>
<td>20term</td>
<td>253361 254442</td>
<td>254025 254399</td>
<td>254324 254394</td>
<td>254307 254475</td>
<td>254341 254376</td>
</tr>
<tr>
<td>gbd</td>
<td>1678.6 1660.0</td>
<td>1595.2 1659.1</td>
<td>1649.7 1655.7</td>
<td>1653.5 1655.5</td>
<td>1653.1 1655.4</td>
</tr>
<tr>
<td>LandS</td>
<td>227.19 226.18</td>
<td>226.39 226.13</td>
<td>226.02 226.08</td>
<td>225.96 226.04</td>
<td>225.72 226.11</td>
</tr>
<tr>
<td>storm</td>
<td>1550627 1550321</td>
<td>1548255 1550255</td>
<td>1549814 1550228</td>
<td>1550087 1550236</td>
<td>1549812 1550239</td>
</tr>
</tbody>
</table>