Reading for This Lecture

- C&T Chapter 11
Integer Linear Optimization

- An *integer linear optimization problem* (ILP) is the same as a linear optimization problem except that the variables can take on only integer values.

- If only some of the variables are constrained to take on integer values, then we call the program a *mixed integer linear optimization problem* (MILP).

- The general form of an MILP is

\[
\begin{align*}
\text{min} & \quad c^T x + d^T y \\
\text{s.t.} & \quad Ax + By = b \\
& \quad x, y \geq 0 \\
& \quad x \in \mathbb{Z}^p \times \mathbb{R}^{n-p}
\end{align*}
\]
Mixed Integer Nonlinear Optimization Problem

• A mixed integer nonlinear optimization problem (MINLP) is the same as a nonlinear optimization problem except that the variables can take on only integer values.

• The general form of a MINLP is

\[
\begin{align*}
\min f(x) \\
\text{s.t. } g(x) &\leq 0 \\
&\quad h(x) = 0 \\
&\quad x \in \mathbb{Z}^p \times \mathbb{R}^{n-p}
\end{align*}
\]
Modeling with Integer Variables

• Why do we need integer variables?

• If the variable is associated with a physical entity that is indivisible, then it must be integer.
 – Shares of a stock.
 – Investments that can only be made in fixed amounts.

• 0-1 (binary) variables can be used to model logical conditions or combinatorial structure.
 – Modeling yes/no decisions.
 – Enforcing disjunctions.
 – Enforcing logical constraints.
 – Modeling fixed costs.
 – Modeling piecewise linear functions.
Conjunction versus Disjunction

• A more general mathematical view that ties integer programming to logic is to think of integer variables as expressing *disjunction*.

• The constraints of a standard mathematical program are *conjunctive*.
 – All constraints must be satisfied.
 – In terms of logic, we have

\[
g_1(x) \leq b_1 \ \text{AND} \ g_2(x) \leq b_2 \ \text{AND} \ \cdots \ \text{AND} \ g_m(x) \leq b_m \quad (1)
\]

 – This corresponds to *intersection* of the regions associated with each constraint.

• Integer variables introduce the possibility to model *disjunction*.
 – At least one constraint must be satisfied.
 – In terms of logic, we have

\[
g_1(x) \leq b_1 \ \text{OR} \ g_2(x) \leq b_2 \ \text{OR} \ \cdots \ \text{OR} \ g_m(x) \leq b_m \quad (2)
\]

 – This corresponds to *union* of the regions associated with each constraint.
How Hard is Integer Programming?

- Solving general integer programs can be much more difficult than solving linear programs.
- There is no known *polynomial-time* algorithm for solving general MILPs.
- Solving the associated *linear programming relaxation* provides a lower bound on the optimal solution value of a given MILP.
- In general, an optimal solution to the LP relaxation may not tell us much about an optimal solution to the MILP.
 - Rounding to a feasible integer solution may be difficult.
 - The optimal solution to the LP relaxation can be arbitrarily far away from the optimal solution to the MILP.
 - Rounding may result in a solution far from optimal.
 - We can sometimes bound the difference between the optimal solution to the LP and the optimal solution to the MILP (*how?*).
The Geometry of Integer Programming

- Let's consider again an integer linear program

\[
\begin{align*}
\min & \quad c^\top x \\
\text{s.t.} & \quad Ax = b \\
& \quad x \geq 0 \\
& \quad x \text{ integer}
\end{align*}
\]

- The feasible region is the integer points inside a polyhedron.

- It is not difficult to see why solving the LP relaxation does not necessarily yield a solution near an integer optimum.
Easy Integer Programs

- Certain integer programs are “easy”.

- What makes an integer program “easy”?
 - All of the extreme points of the LP relaxation are integral.
 - Every square submatrix of A has determinant $+1$, -1, or 0.
 - We know a complete description of the convex hull of feasible solutions.
 - We have an efficient algorithm for finding an optimal integer solution (not based on linear programming).
 - There is no duality gap (more on this later).

- Examples of “easy” integer programs.
 - Minimum cost network flow problem.
 - Maximum flow problem.
 - Assignment problem.
Modeling Binary Choice

- We use binary variables to model yes/no decisions.

- **Example:** Integer knapsack problem
 - We are given a set of items with associated values and weights.
 - We wish to select a subset of maximum value such that the total weight is less than a constant K.
 - We associate a 0-1 variable with each item indicating whether it is selected or not.

\[
\begin{align*}
\text{max} & \quad \sum_{j=1}^{m} c_j x_j \\
\text{s.t.} & \quad \sum_{j=1}^{m} w_j x_j \leq K \\
& \quad x \geq 0 \\
& \quad x \quad \text{integer}
\end{align*}
\]

- Knapsack problems arise as subproblems in many financial applications.
Modeling Dependent Decisions

• We can also use binary variables to enforce the condition that a certain action can only be taken if some other action is also taken.

• Suppose x and y are variables representing whether or not to take certain actions.

• The constraint $x \leq y$ says “only take action x if action y is also taken”.

Example: Portfolio Optimization

• Consider a portfolio optimization problem and suppose we want to avoid positions that are “too small.”

• As before, let x_i be the size of the investment in asset i.

• As a first ideas, we could impose a constraint that says something like $x_i > 0 \Rightarrow x_i \geq l_i$.

• Possible implementations

 – Require investments in asset i to be multiples of l_i (by scaling variable x_i and requiring it to be integer).
 – Add a binary variable y_i that takes value 1 if the asset is purchased and 0 otherwise and use it enforce the constraint.
 – Use a branching disjunction (more on this later).
Variable Upper and Lower Bounds

- Variable bounds are bounds whose value is either 0 or some other constant, depending on the value of an associated binary variable.

- To impose a variable upper bound on variable x_i, we add an associated a binary variable y_i and the constraint

$$x_i \leq y_i u_i$$

- This constraint (along with nonnegativity) means that x_i must either take value 0 or have an upper bound of u_i.

- We can have both upper and lower bounds variable with the constraint

$$y_i l_i \leq x_i \leq y_i u_i$$

- We could use variable bounds to impose the minimum transaction level constraint.
Modeling Disjunctive Constraints

• More generally, we may be given two constraints $a^\top x \geq b$ and $c^\top x \geq d$ with nonnegative coefficients.

• We want to impose that at least one of the two constraints to be satisfied.

• To model this, we define a binary variable y and impose

\[
\begin{align*}
 a^\top x & \geq yb, \\
 c^\top x & \geq (1 - y)d, \\
 y & \in \{0, 1\}.
\end{align*}
\]

• Further generalizing, we can impose that at least k out of m constraints be satisfied with

\[
\begin{align*}
 (a_i)^\top x & \geq b_i y_i, \quad i \in [1..m] \\
 \sum_{i=1}^{m} y_i & \geq k, \\
 y_i & \in \{0, 1\}
\end{align*}
\]
Cardinality Constraints

- Another approach to ensuring that a portfolio is not composed of many small positions is to impose an upper bound of K on the number of positions.

- This can be done using the same aforementioned indicator variables along with a constraint of the form

$$\sum_{i=1}^{n} y_i \leq K$$

- Alternatively, this constraint could also be imposed using branching disjunctions without the indicator variables (more on this later).
Example: Simple Marwowitz Portfolio Model

```python
model.assets = Set()
model.T = Set(initialize = range(1994, 2014))
model.max_risk = Param(initialize = .00305)
model.R = Param(model.T, model.assets)
def mean_init(model, j):
    return sum(model.R[i, j] for i in model.T)/len(model.T)
model.mean = Param(model.assets, initialize = mean_init)
def Cov_init(model, i, j):
    return sum((model.R[k, i] - model.mean[i])*(model.R[k, j] - model.mean[j])
                for k in model.T)
model.Cov = Param(model.assets, model.assets, initialize = Cov_init)
model.alloc = Var(model.assets, within=NonNegativeReals)
def risk_bound_rule(model):
    return (sum(sum(model.Cov[i, j] * model.alloc[i] * model.alloc[j]
                  for i in model.assets) for j in model.assets)
            <= model.max_risk)
model.risk_bound = Constraint(rule=risk_bound_rule)
def tot_mass_rule(model):
    return (sum(model.alloc[j] for j in model.assets) == 1)
model.tot_mass = Constraint(rule=tot_mass_rule)
def objective_rule(model):
    return sum(model.alloc[j]*model.mean[j] for j in model.assets)
model.objective = Objective(sense=maximize, rule=objective_rule)
```
Example: Adding Cardinality Constraints

```python
model.K = Param()
model.buy = Var(model.assets, within=NonNegativeIntegers)
def selection_rule(model, i):
    return (model.alloc[i] <= model.buy[i])
model.selection = Constraint(model.assets, rule=selection_rule)

def cardinality_rule(model):
    return (summation(model.buy) == model.K)
model.cardinality = Constraint rule=cardinality_rule)
```
Example: Capital Budgeting

- Suppose we have $4 million to invest in projects over the next three years.

- Each project has an associated cost and profit (in present value dollars) as follows:

<table>
<thead>
<tr>
<th>Project</th>
<th>Year 1</th>
<th>Year 2</th>
<th>Year 3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cost</td>
<td>Profit</td>
<td>Cost</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>10</td>
<td>-</td>
</tr>
</tbody>
</table>
Modeling a Restricted Set of Values

• Note that in each year, our decision is really just how much to invest in that year.

• One approach is therefore to have a single variable for each year and to restrict the value to be equal to one of the possible investment levels.

• More generally, we may want variable x to only take on values in the set $\{a_1, \ldots, a_m\}$.

• We introduce m binary variables $y_j, j = 1, \ldots, m$ and the constraints

$$x = \sum_{j=1}^{m} a_j y_j,$$

$$\sum_{j=1}^{m} y_j = 1,$$

$$y_j \in \{0, 1\}$$

• In fact, in this case, we don’t actually need the variable x.
Set Partitioning, Packing, and Covering Problems

- Constraints of the form $\sum_{j \in T} x_j = 1$ can be used to enforce that exactly one item should be chosen from a set T.

- Similarly, we can also require that at most one or at least one item should be chosen.

- **Example:** Set partitioning problem
 - A set partitioning problem is any problem of the form
 \[
 \begin{align*}
 \text{min} & \quad c^\top x \\
 \text{s.t.} & \quad Ax = 1 \\
 & \quad x_j \in \{0, 1\} \forall j
 \end{align*}
 \]
 where A is a 0-1 matrix.
 - Each row of A represents an item from a set S.
 - Each column A_j represents a subset S_j of S.
 - Each variable x_j represents selecting subset S_j.
 - The constraints say that $\bigcup_{\{j|x_j=1\}} S_j = S$.
 - In other words, each item must appear in at least one selected subset.
Example: Combinatorial Auctions

• The winner determination problem for a *combinatorial auction* is a *set packing* problem.

• The *rows* represent items or services that a buyer is trying to acquire.

• The *columns* represent subsets of the items that a particular supplier can provide for a specified cost.

• The object is to select a subset of the bidders such that

 – cost is *minimized*, and

 – every item is provided by at least one bidder.

• This is a *set covering* problem.
Piecewise Linear Cost Functions

- We can use binary variables to model arbitrary piecewise linear cost functions.

- We could use such a model to solve a version of the capital budgeting problem in which we are allowed to invest in multiple projects, in whole or in part.

- The function is specified by ordered pairs \((a_i, f(a_i))\) and we wish to evaluate it at a point \(x\).

- We have a binary variable \(y_i\), which indicates whether \(a_i \leq x \leq a_{i+1}\).

- To evaluate the function, we will take linear combinations \(\sum_{i=1}^{k} \lambda_i f(a_i)\) of the given functions values.

- This works only if the only two nonzero \(\lambda_i\)s are the ones corresponding to the endpoints of the interval in which \(x\) lies.
Minimizing Piecewise Linear Cost Functions

• The following formulation minimizes the function.

\[
\begin{align*}
\min & \sum_{i=1}^{k} \lambda_i f(a_i) \\
\text{s.t.} & \sum_{i=1}^{k} \lambda_i = 1, \\
& \lambda_1 \leq y_1, \\
& \lambda_i \leq y_{i-1} + y_i, \quad i \in [2..k-1], \\
& \lambda_k \leq y_{k-1}, \\
& \sum_{i=1}^{k-1} y_i = 1, \\
& \lambda_i \geq 0, \\
& y_i \in \{0, 1\}.
\end{align*}
\]

• The key is that if \(y_j = 1 \), then \(\lambda_i = 0, \forall i \neq j, j + 1 \).
Fixed-charge Problems

• In many instances, there is a fixed cost and a variable cost associated with a particular decision.

• For example, there might be a fixed cost to certain financial transactions, regardless of the amount transacted.

• Consider the problem of converting B units of currency 1 into currency N through a sequence of intermediate transactions in currencies 2 through $N - 1$.

 – To convert current i into a set of other currencies, there is a fixed cost of c_i (in terms of currency N).
 – There is also an associated exchange rate r_{ij}.
 – There is a cap u_i on the total amount of currency i that can be converted.
 – The goal is to end up with as much of currency N as possible.
Modeling the Currency Exchange Problem

- The decision to be made is how much of each currency to exchange for each other currency. So variables in this case are
 \[y_i = \text{whether any of currency } i \text{ is exchanged for other currencies} \]
 \[x_{ij} = \text{amount of currency } i \text{ exchanged for currency } j \]

- Note that the amount of currency \(j \) we end up with after exchanging from \(i \) is \(r_{ij}x_{ij} \).

- Ultimately, we want to end up with as much of currency \(N \) as possible, so our objective function is the amount of all other currencies exchanged into currency \(N \):

\[
\max \sum_{i=1}^{N-1} r_{iN}x_{iN} - \sum_{i=1}^{n} c_i y_i.
\]
Modeling the Currency Exchange Problem (cont.)

- For notational convenience, we assume that $x_{ii} = 0 \ \forall i \in [1..N]$.
- For every currency $j \neq 1$, the amount available for exchange is $\sum_{i=1}^{N-1} r_{ij} x_{ij}$ and the amount actually exchanged is $\sum_{j=2}^{N} x_{ij}$.
- The constraints are then

\[
\sum_{j=2}^{N} x_{ij} \leq y_i u_i, \ \forall i \in [1..N],
\]

\[
\sum_{i=1}^{N-1} r_{ij} x_{ij} \geq \sum_{k=2}^{N} x_{jk}, \ \forall j \in [2..N - 1],
\]

\[
\sum_{j=2}^{N} x_{1j} \leq B, \ \text{and}
\]

\[
x_{ij} \geq 0, \ \forall i \in [1..N - 1], j \in [2..N].
\]

\[
y_i \in \{0, 1\}, \ \forall i \in [1..N - 1]
\]
Modeling the Currency Exchange Problem (cont.)

This gives us a integer programming formulation that looks like

$$\begin{align*}
\text{max} & \quad \sum_{i=1}^{N} r_{iN} x_{iN} - c_i y_i \\
\text{s.t.} & \quad \sum_{j=1}^{N} x_{ij} \leq y_i u_i, \quad \forall \ i \in [1..N], \\
& \quad \sum_{i=1}^{N} r_{ij} x_{ij} \leq \sum_{k=1}^{N} x_{jk}, \quad \forall \ j \in [2..N - 1], \\
& \quad \sum_{j=1}^{N} x_{1j} \leq B, \\
& \quad x_{ij} \geq 0, \quad \forall \ i \in [1..N - 1], j \in [2..N], \\
& \quad y_i \in \{0, 1\}, \quad \forall \ i \in [1..N - 1].
\end{align*}$$
Distinguishing “Formulations” and “Models”

• The modeling process consists generally of the following steps.
 – Determine the “real-world” state variables, system constraints, and goal(s) or objective(s) for operating the system.
 – Translate these variables and constraints into the form of a mathematical optimization problem (the “formulation”).
 – Solve the mathematical optimization problem.
 – Interpret the solution in terms of the real-world system.

• This process presents many challenges.
 – Simplifications may be required in order to ensure the eventual mathematical program is “tractable”.
 – The mappings from the real-world system to the model and back are sometimes not very obvious.
 – There may be more than one valid “formulation”.

• All in all, an intimate knowledge of mathematical optimization definitely helps during the modeling process.
The Importance of Formulation

- Different formulations for the same problem can result in dramatically different in terms of tractability.

- Simple example: two ways of modeling binary variables x.
 - $x \in \{0, 1\}$
 - $x = x^2$

- The first formulation is integer linear, while the second formulation is nonlinear continuous.

- These would be solved with two entirely different classes of algorithms.

- As a rule of thumb, the first formulation is preferred.