The SYMPHONY Callable Library for Mixed-Integer Linear Programming

Menal Guzelsoy and Ted Ralphs
Industrial and Systems Engineering
Lehigh University

INFORMS Annual Meeting, San Francisco, CA, November 16, 2005
Outline of Talk

• Overview of SYMPHONY

• Background
 – Duality
 – Sensitivity analysis
 – Warm starting
 – Bicriteria and parametric programming

• Implementation
 – Warm Starting
 – Sensitivity Analysis
 – Bicriteria Solve

• Examples

• Computational Experiments
Goals of the Project

• This work is part of a larger effort to develop strategies for real-time integer programming.

• The goal is to make integer programming a tactical decision-making tool.

• Toolbox
 – Sensitivity analysis
 – Warm starting
 – Parametric analysis
 – Heuristics
 – Parallel/grid/on-demand computing

• The Holy Grail: Solve difficult integer programs in “real time” in the presence of uncertain data.
A Brief Overview of SYMPHONY

- SYMPHONY is an open-source software package for solving and analyzing mixed-integer linear programs (MILPs).

- SYMPHONY can be used in three distinct modes.
 - **Black box solver**: Solve generic MILPs (command line or shell).
 - **Callable library**: Call SYMPHONY from a C/C++ code.
 - **Framework**: Develop a customized solver or callable library.

- SYMPHONY is part of the Computational Infrastructure for Operations Research (COIN-OR) libraries (www.coin-or.org).

- New features give SYMPHONY the look and feel of an LP solver.

- This talk will focus on these new features,

- This talk is based on the (not officially released) SYMPHONY 5.1, available from the COIN-OR CVS server.
SYMPHONY Features

- Core solution methodology is *branch and cut*.
 - Hybrid depth-first/best-first search strategy.
 - Strong branching mechanism.
 - Primal heuristic from CBC.
 - Customizable through parameters and callbacks.

- Cuts can be generated with COIN-ORs Cut Generation Library.
 - Cliques
 - Flow Covers
 - Gomory
 - Knapsack Cover
 - Lift and Project
 - Reduce and Split
 - Mixed-integer Rounding
 - Off Hole
 - Probing
 - Simple Rounding
 - Two-slope MIR
 - Problem-specific

- User interfaces
 - Native C callable
 - Open Solver Interface C++
 - FLOPC++ modeling language
 - MPS, AMPL/GMPL, LPFML file formats.
What’s Available

• Packaged releases from www.branchandcut.org
• Current source at CVS on www.coin-or.org.
• An extensive user’s manual on-line and in PDF.
• A tutorial illustrating the development of a custom solver step by step.
• Configuration and compilation files for supported architectures
 – Single-processor Linux, Unix, or Windows
 – Distributed memory parallel (PVM)
 – Shared memory parallel (OpenMP)
• Source code for SYMPHONY solvers.
 - Generic MILP
 - Multicriteria MILP
 - Multicriteria Knapsack
 - Traveling Salesman Problem
 - Vehicle Routing Problem
 - Mixed Postman Problem
 - Set Partitioning Problem
 - Matching Problem
 - Network Routing
Mathematical Programming Duality

• For an optimization problem

\[z = \min \{ f(x) \mid x \in X \}, \]

called the \textit{primal problem}, an optimization problem

\[w = \max \{ g(u) \mid u \in U \} \]

such that \(w \leq z \) is called a \textit{dual problem}.

• It is a \textit{strong dual} if \(w = z \).

• Uses for the dual problem
 – Bounding
 – Deriving optimality conditions
 – Sensitivity analysis
 – Warm starting
Duals for ILP: Previous Work

• R. Gomory (and W. Baumol) ('60–'73)
• G. Roodman ('72)
• E. Johnson (and Burdet) ('72–'81)
• R. Jeroslow (and C. Blair) ('77-'85)
• A. Geoffrion and R. Nauss ('77)
• D. Klein and S. Holm ('79–'84)
• L. Wolsey (and L. Schrage) ('81–'84)
• ...
• D. Klabjan ('02)
• j. Lasserre '05
Duals for Linear Optimization Problems

• Let $\mathcal{P} = \{x \in \mathbb{R}^n \mid Ax = b, x \geq 0\}$ nonempty for $A \in \mathbb{Q}^{m \times n}$, $b \in \mathbb{Q}^m$.

• We consider the (bounded) pure integer linear program $\min_{x \in \mathcal{P} \cap \mathbb{Z}^n} c^\top x$ for $c \in \mathbb{R}^n$.

• How do we derive a dual? Consider the following more formal notion of duality for linear optimization problems (Wolsey).

$$w = \max_{g : \mathbb{R}^m \to \mathbb{R}} \{g(b) \mid g(Ax) \leq c^\top x, x \geq 0\}$$

(1)

$$= \max_{g : \mathbb{R}^m \to \mathbb{R}} \{g(b) \mid g(d) \leq z(d), d \in \mathbb{R}^m\},$$

(2)

where $z(d) = \min_{x \in \mathcal{F}(d)} c^\top x$ is the value function and $\mathcal{F}(d) = \{x \in X \mid Ax = d, x \geq 0\}$.

• If $X = \mathbb{R}^n$, then an optimal dual function is the usual LP dual.

• If $X = \mathbb{Z}^n$, then an optimal dual function is more difficult to construct.
Dual Solutions from Primal Algorithms

• In LP, an optimal dual function arises naturally as a by-product of the simplex algorithm.

• The optimal basis yields optimal primal and dual solutions and a certificate of optimality.

• Sensitivity analysis and warm starting procedures for LP are based on the associated optimality conditions.

• We can extend this to ILP by considering the implicit certificate of optimality associated with branch and bound.
Dual Solutions for ILP from Branch and Bound

- Let $\mathcal{P}_1, \ldots, \mathcal{P}_s$ be a partition of \mathcal{P} into (nonempty) subpolyhedra.
- Let LP_i be the linear program $\min_{x^i \in \mathcal{P}_i} c^\top x^i$ associated with the subpolyhedron \mathcal{P}_i.
- Let B^i be an optimal basis for LP_i.
- Then the following is a valid lower bound

$$L = \min \{c_{B^i}(B^i)^{-1}b + \gamma_i \mid 1 \leq i \leq s\},$$

where γ_i is the constant factor associated with the nonbasic variables fixed at nonzero bounds.

- A similar function yields an upper bound.
- A partition that yields equal lower and upper bounds is called an *optimal partition*.
- This is the certificate constructed by branch and bound.
Sensitivity Analysis

- The function

\[L(d) = \min\{c_B(B^i)^{-1}d + \gamma_i \mid 1 \leq i \leq s\}, \]

provides an optimal solution to (2).

- The corresponding upper bounding function is

\[U(c) = \min\{c_B(B^i)^{-1}b + \beta_i \mid 1 \leq i \leq s, \hat{x}^i \in P^I\} \]

- These functions can be used for local sensitivity analysis, just as one would do in linear programming.
 - For changes in the right-hand side, the lower bound remains valid.
 - For changes in the objective function, the upper bound remains valid.
 - One can also add cuts and variables.

- One can compute an “allowable range” for changes to the instance data as the intersection of the ranges for each member of the partition.
Example: Using Sensitivity Analysis

- **SYMPHONY** will calculate bounds after changing the objective or right-hand side vectors.

```c
int main(int argc, char **argv)
{
    OsiSymSolverInterface si;
    si.parseCommandLine(argc, argv);
    si.loadProblem();
    si.setSymParam(OsiSymSensitivityAnalysis, true);
    si.initialSolve();
    int ind[2];
    double val[2];
    ind[0] = 4; val[0] = 7000;
    ind[1] = 7; val[1] = 6000;
    lb = si.getLbForNewRhs(2, ind, val);
    ub = si.getUbForNewRhs(2, ind, val);
}
```
Limitations

- The method presented only applies to pure branch and bound.
- Cut generation complicates matters.
- Fixing by reduced cost also complicates matters.
- Have to deal with infeasibility of subproblems.
- These issues can all be addressed, but the methodology is more involved.
- Another issue is that the quality of the bounds may degrade quickly outside the allowable range.
- Two options for getting improved bounds:
 - Reactive: Continue solving from a “warm start.”
 - Proactive: Perform a parametric analysis.
Warm Starting

- Why is warm starting important for ILP??
- There are many examples of algorithms that solve a sequence of related ILPs.
 - Decomposition algorithms
 - Stochastic ILP
 - Parametric/Multicriteria ILP
 - Determining irreducible inconsistent subsystem
- For such problems, warm starting can potentially yield big improvements.
- Warm starting is also important for performing sensitivity analysis outside of the allowable range.
- What exactly does “warm starting” mean?
Warm Starting Information

- Most optimization algorithms can be viewed as iterative procedures for constructing a certificate of optimality, often based on duality.

- By providing a candidate certificate from a previous computation, the procedure can sometimes be accelerated.

- In linear programming, the initial certificate is a starting basis, which can be iteratively modified if it does not satisfy optimality conditions.

- The corresponding concept in ILP is a starting partition, which yields a computable dual function.

- A starting partition can be obtained from a previous branch and bound calculation.

- Unlike the LP case, however, a single branch and bound tree yields a wide range of possible starting partitions.

- It is not obvious which one to choose.
Warm Starts for MILP

- To allow resolving from a warm start, we have defined a SYMPHONY warm start class, which is derived from CoinWarmStart.

- The class stores a snapshot of the search tree, with node descriptions including:
 - lists of active cuts and variables,
 - branching information,
 - warm start information, and
 - current status (candidate, fathomed, etc.).

- The tree is stored in a compact form by storing the node descriptions as differences from the parent.

- Other auxiliary information is also stored, such as the current incumbent.

- A warm start can be saved at any time and then reloaded later.

- The warm starts can also be written to and read from disk.

- A global cut pool can be saved and reused if desired.
Warm Starting Procedures

- **After modifying parameters**
 - If only parameters have been modified, then the candidate list is recreated and the algorithm proceeds as if left off.
 - This allows parameters to be tuned as the algorithm progresses if desired.

- **After modifying problem data**
 - Currently, we only allow modification of rim vectors.
 - After modification, all leaf nodes must be added to the candidate list.
 - After constructing the candidate list, we can continue the algorithm as before.

- There are many opportunities for improving the basic scheme, especially when solving a known family of instances (**Geoffrion and Nauss**)
Constructing the Warm Start

- Given a branch and bound tree, any subtree can yield a starting partition.
- A partition that is too fine-grained may not be useful.
- The greater the change in problem data, the less useful information can be obtained from the tree.

- Options for constructing a starting partition.
 - Take the first n nodes.
 - Take all nodes above a given level in the tree.
 - Take the first $p\%$ of the nodes.
 - Try to construct a partition using information about how the problem was modified.
Example; Using Warm Starting (Parameter Modification)

- The following example shows a simple use of warm starting to create a dynamic algorithm.

```c
int main(int argc, char **argv)
{
    OsiSymSolverInterface si;
    si.parseCommandLine(argc, argv);
    si.loadProblem();
    si.setSymParam(OsiSymFindFirstFeasible, true);
    si.setSymParam(OsiSymSearchStrategy, DEPTH_FIRST_SEARCH);
    si.initialSolve();
    si.setSymParam(OsiSymFindFirstFeasible, false);
    si.setSymParam(OsiSymSearchStrategy, BEST_FIRST_SEARCH);
    si.resolve();
}
```
Example: Using Warm Starting (Problem Modification)

- The following example shows how to warm start after problem modification.

```c
int main(int argc, char **argv) {
    OsiSymSolverInterface si;
    CoinWarmStart ws;
    si.parseCommandLine(argc, argv);
    si.loadProblem();
    si.setSymParam(OsiSymNodeLimit, 100);
    si.initialSolve();
    ws = si.getWarmStart();
    si.resolve();
    si.setObjCoeff(0, 1);
    si.setObjCoeff(200, 150);
    si.setWarmStart(ws);
    si.resolve();
}
```
Example: Using Warm Starting

- Applying the code from the previous slide to the MIPLIB 3 problem p0201, we obtain the results below.

- Note that the warm start doesn’t reduce the number of nodes generated, but does reduce the solve time dramatically.

<table>
<thead>
<tr>
<th></th>
<th>CPU Time</th>
<th>Tree Nodes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Generate warm start</td>
<td>28</td>
<td>100</td>
</tr>
<tr>
<td>Solve orig problem (from warm start)</td>
<td>3</td>
<td>118</td>
</tr>
<tr>
<td>Solve mod problem (from scratch)</td>
<td>24</td>
<td>122</td>
</tr>
<tr>
<td>Solve mod problem (from warm start)</td>
<td>6</td>
<td>198</td>
</tr>
</tbody>
</table>
Parametric Analysis

- For global sensitivity analysis, we need to solve parametric programs.
- SYMPHONY includes an algorithm for determining all Pareto outcomes for a bicriteria MILP.
- The algorithm consists of solving a sequence of related ILPs and is asymptotically optimal.
- Such an algorithm can be used to perform global sensitivity analysis by constructing a “slice” of the value function.
- Warm starting can be used to improve efficiency.
Example: Bicriteria ILP

- Consider the following bicriteria ILP:

\[
\begin{align*}
\text{vmax} & \quad [8x_1, x_2] \\
\text{s.t.} & \quad 7x_1 + x_2 \leq 56 \\
& \quad 28x_1 + 9x_2 \leq 252 \\
& \quad 3x_1 + 7x_2 \leq 105 \\
& \quad x_1, x_2 \geq 0
\end{align*}
\]

- The following code solves this model.

```c
int main(int argc, char **argv)
{
    OsiSymSolverInterface si;
    si.parseCommandLine(argc, argv);
    si.setObj2Coeff(1, 1);
    si.loadProblem();
    si.multiCriteriaBranchAndBound();
}
```
Example: Pareto Outcomes for Example

Non-dominated Solutions
Example: Bicriteria Solver

- By examining the supported solutions and break points, we can easily determine $p(\theta)$, the optimal solution to the ILP with objective $8x_1 + \theta$.

<table>
<thead>
<tr>
<th>θ range</th>
<th>$p(\theta)$</th>
<th>x_1^*</th>
<th>x_2^*</th>
</tr>
</thead>
<tbody>
<tr>
<td>$(-\infty, 1.333)$</td>
<td>64</td>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td>$(1.333, 2.667)$</td>
<td>$56 + 6\theta$</td>
<td>7</td>
<td>6</td>
</tr>
<tr>
<td>$(2.667, 8.000)$</td>
<td>$40 + 12\theta$</td>
<td>5</td>
<td>12</td>
</tr>
<tr>
<td>$(8.000, 16.000)$</td>
<td>$32 + 13\theta$</td>
<td>4</td>
<td>13</td>
</tr>
<tr>
<td>$(16.000, \infty)$</td>
<td>15θ</td>
<td>0</td>
<td>15</td>
</tr>
</tbody>
</table>
Example: Graph of Price Function
Example: Pareto Outcomes for a Network Design Problem
Using Warm Starting: Change in the Objective Function

Table 1: Warm start after 1\% modification on a random subset of objective coefficients of random size. Warm start consists of nodes above the \(r\)% level of the tree, \(r \in \{0, 50, 100\}\)
Using Warm Starting: Change in the Objective Function

Table 2: Warm start after 10% modification on a random subset of objective coefficients of random size. Warm start consists of nodes above the $r\%$ level of the tree, $r \in \{0, 50, 100\}$
Table 3: Warm start after 20% modification on a random subset of objective coefficients of random size and use the nodes above the $r\%$ level of the tree, $r \in \{0, 50, 100\}$
Black: without warm starting
White: with warm starting

Table 4: Warm start after random perturbation of $+/ - 10\%$ on a random subset of objective coefficients of size $0.1n$ (left) and of size $0.2n$ (right)
Using Warm Starting: Change in the Right-hand Side

Table 5: Change rhs b of a knapsack problem between $b/2$ and $3b/2$ and warm start using the nodes above the 25% level of the tree.
Using Warm Starting: Bicriteria Optimization

Table 6: Results of using warm starting to solve bicriteria optimization problems.
Extensions: Reduced Cost Fixing

For an ILP problem, let f be a feasible subadditive dual function and let \hat{z}^{IP} be an upper bound on z^{IP}. If $c_k - f(a_k) > 0$ and

$$v = \left\lceil \frac{\hat{z}^{IP} - f(b)}{c_k - f(a_k)} \right\rceil > 0$$

for a column k, then there is an optimal solution x^* with $x^*_k \leq v - 1$.

- It is possible to obtain a feasible subadditive dual function if the problem is solved by branch and bound.
- f is still feasible to $\mathcal{P}(\tilde{b})$, i.e., when $b \rightarrow \tilde{b}$.
- Using reduced cost fixing over this function will preprocess/tighten the variable bounds before warm starting.
Extensions: Sensitivity Analysis for Branch and Cut Algorithm

- We can extend Wolsey’s MILP sensitivity analysis for branch and bound algorithm to branch and cut to get a rough lower bound to modified problem with $b \rightarrow \tilde{b}$.

- The algorithm basically calculates a lower bound for each tree node assuming the same tree was used to solve $\mathcal{P}(\tilde{b})$, and gathers those bounds to get a lower bound to $\mathcal{P}(\tilde{b})$.

- We can get a rough lower bound for each node of the branch and cut tree and follow the rest of the algorithm.
Extensions: Sensitivity Analysis for Branch and Cut Algorithm

Let the LP relaxation for node k be

$$\mathcal{P}^t(b) = \min cx$$

s.t. $\sum_{j=1}^{n} a_j x_j \geq b \ (\gamma^k)$

$$\sum_{j=1}^{n} h_j^k x_j \geq r^k \ (\pi^k)$$

$$x \geq l^k \ (\theta^k)$$

$$-x \geq -u^k \ (\bar{\theta}^k)$$

$$x \geq 0$$

with the associated dual feasible vectors where the constraint set $\sum_{j=1}^{n} h_j^k x_j \geq r^k$ represents the cuts added so far.
Extensions: Lower Bound for $\mathcal{P}^t(\tilde{b})$

Then for any feasible solution x to $\mathcal{P}^t(\tilde{b})$(without the cut set):

$$cx = \sum c_j x_j \geq \gamma^k \sum a_j x_j + \pi^k \sum h_j^k x_j + \sum \theta_j^k x_j - \sum \overline{\theta}_j^k x_j$$

$$\geq \gamma^k \tilde{b} + \pi^k \sum h_j^k x_j + \theta^k l^k - \overline{\theta}_j^k u^k$$

$$\geq \gamma^k \tilde{b} + \pi^k \tilde{r}^k + \theta^k l^k - \overline{\theta}_j^k u^k$$

where

$$\tilde{r}^k = \sum h_j^k y_j \quad \text{and} \quad y_j = \begin{cases} \frac{l_j^k}{u_j^k} & \text{if} \quad \pi^k h_j^k \geq 0 \\ u_j^k & \text{o.w} \end{cases}$$

May be useful for the problems with bounded variables, for instance, binary problems.
Is it possible to get a strong (not necessarily subadditive) dual formulation from branching on cuts tree, similar to Wolsey’s formulation for branch and bound?
Conclusion

- We have briefly introduced the issues surrounding \textit{warm starting} and \textit{sensitivity analysis} for integer programming.

- An examination of early literature has yielded some ideas that can be useful in today’s computational environment.

- We presented a new version of the SYMPHONY solver supporting warm starting and sensitivity analysis for MILPs.

- This work has only scratched the surface of what can be done.

- We need to learn much more about how these methods behave in practice.

- In future work, we plan on refining SYMPHONY’s capabilities and employing them within a larger distributed computational framework.