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Two-Stage Stochastic Program with Recourse

min f(x) = min c>x+ Ew∈Ω[Q(x,w)]

s.t. x ∈ X
(SP)

Q(x,w) = min q(w)>y

s.t. W (w)y = h(w)− T (w)x

y ∈ Y
(RP)

where X and Y are the feasible regions of the first and second stages and
may be discrete sets. In this talk, we assume

w follows a discrete distribution with a finite support, and

W , q, and T are fixed.
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Overview

We present an algorithmic framework for solving two-stage stochastic
integer programs.

Solution of the problem requires analysis of how the solution to the
second-stage problem varies as a function of the first stage solution.

The first part of this talk will focus on properties of the value function
of a mixed integer linear program.

In the second part, we describe a Benders-like algorithm based on
approximation of the value function.

We aim to develop an algorithm that can be implemented in practice.
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Benders’ Principle (Linear Programming)

zLP = min
(x,y)∈Rn

{
c′x+ c′′y

∣∣ A′x+A′′y ≥ b
}

= min
x∈Rn′

{
c′x+ φ(b−A′x)

}
,

where

φ(d) = min c′′y

s.t. A′′y ≥ d

y ∈ Rn
′′
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Basic Strategy:

The function φ is the value function of a linear program.

The value function is piecewise linear and convex.

We iteratively generate a lower approximation by sampling the
domain.
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Benders’ Principle (Integer Programming)

zIP = min
(x,y)∈Zn

{
c′x+ c′′y

∣∣ A′x+A′′y ≥ b
}

= min
x∈Rn′

{
c′x+ φ(b−A′x)

}
,

where

φ(d) = min c′′y

s.t. A′′y ≥ d

y ∈ Zn
′′
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Basic Strategy:

Here, φ is the value function of an integer program.

In the general case, the function φ is piecewise linear but not convex.

Here, we also iteratively generate a lower approximation by evaluating
φ.
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LP Value Function

Example

φLP (b) = min 6x1 + 7x2 + 5x3

s.t. 2x1 − 7x2 + x3 = b

x1, x2, x3 ∈ R+

(Ex.LP)
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LP Value Function Structure

φLP (b) = min c>x

s.t. Ax = b

x ∈ Rn+

(LP)

Assume the dual of (LP) is feasible.

The epigraph of φLP is a convex cone, call it L:

L := cone{(A1, c1), (A2, c2), . . . , (An, cn), (0, 1)}

Let u1, . . . , uk be extreme points of the feasible region of the dual of
(LP) and d1, . . . , dp be its extreme directions. Then

L := {(b, z) : z ≥ u>i b, i = 1, . . . , k, d>j b ≤ 0, j = 1, . . . , p}.

Note that the value function has an underlying discrete structure.
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Example: MILP Value Function

MILP value function is non-convex and discontinuous piecewise polyhedral.

Example

φ(b) = min 3x1 +
7

2
x2 + 3x3 + 6x4 + 7x5 + 5x6

s.t. 6x1 + 5x2 − 4x3 + 2x4 − 7x5 + x6 = b

x1, x2, x3 ∈ Z+, x4, x5, x6 ∈ R+

(Ex1.MILP)
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Example: MILP Value function

Example

φ(b) = min x1 −
3

4
x2 +

3

4
x3

s.t.
5

4
x1 − x2 +

1

2
x3 = b

x1, x2 ∈ Z+, x3 ∈ R+

(Ex2.MILP)
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Discrete Structure of the Value Function

Our goal is to develop a finite procedure for constructing the value
function.

To accomplish this, we want to exploit its discrete structure.

This structure arises as a combination of the discrete structures of
two underlying value functions.

The continuous restriction.

The integer restriction.
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Continuous and Integer Restriction of an MILP

Consider
φ(b) = min c>I xI + c>CxC

s.t. AIxI +ACxC = b,

x ∈ Zr+ × Rn−r+

(MILP)

Define the continuous restriction of (??) as

φC(b) = min c>CxC

s.t. ACxC = b,

x ∈ Rn−r+

(CR)

and its integer restriction as

φI(b) = min c>I xI

s.t. AIxI = b

xI ∈ Zr+

(IR)
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Discrete Representation of the Value Function

For b ∈ Rm, we have that

φ(b) = min cIxI + φC(b−AIxI)
s.t. xI ∈ Zr+

(1)

From this we see that the value function is comprised of the minimum
of a set of shifted copies of φC .

The set of shifts, along with φC describe the value function exactly.

For x̂I ∈ Zr+, let

φC(b, x̂I) = φC(b−AI x̂I) + cIxI ∀b ∈ Rm.

Then we have that φ(b) = minxI∈Zr
+
φC(b, x̂I).
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Properties of MILP Value Function

We define

SD = {ν : A>Cν ≤ cC}.

E = {E ∈ Rn : E is the index set of a dual feasible basis of (CR)}.

For E ∈ E , ν>E = c>EA
−1
E (extreme points of SD).

Proposition 2.1

Consider N ⊆ B over which φ is differentiable. Then, there exist an
integral part of the solution x∗I ∈ Zr and E ∈ E such that
φ(b) = c>I x

∗
I + ν>E (b−AIx∗I) for all b ∈ N .

Proposition 2.2

The gradient of φ on a neighborhood of a differentiable point is a unique
optimal dual feasible solution to (CR).
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Properties of MILP Value Function

We now attempt to characterize the points at which the shifts of the LP
value function occur.

Definition 2.1

A point b̂ is called a point of strict local convexity of a function
f : Rn → R ∪ {±∞} if for some ε > 0 and g ∈ ∂f(b̂)

f(b) > f(b̂) + g>(b− b̂) for all b ∈ Nε(b̂), b 6= b̂

For epi(φC), the single extreme point (if there is one), is the only
point of strict local convexity.

For φ, these occur wherever one of the LP value function cones is
“anchored.”

Let P be this set of points of strict local convexity of φ.
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Properties of MILP Value Function
The Jeroslow Formula

Consider the following scaled MILP, where M ∈ Z+ such that MA−1
E AjI is

a vector of integers for all E ∈ E , j = 1 . . . r.

min c>I xI +
1

M
c>CxC

s.t. AIxI +
1

M
ACxC = b

(xI , xC) ∈ Zr
+ × Rn−r

+

(2)

Jeroslow Formula [Blair, 1995]

The value function (??) can be written as

φ(b) = min
E∈E

G(bbcE) + ν>E (b− bbcE),

where bbcE = 1
MAE

⌊
MA−1E b

⌋
and G is the value function of a related pure

integer program.
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Properties of MILP Value Function

Let TE = {b ∈ B : bbcE = b}, T =
⋂
E∈E TE . From [Blair, 1995], we

know for b ∈ T ,

φ(b) = min c>I xI +
1

M
c>CxC

s.t. AIxI +
1

M
ACxC = b

(xI , xC) ∈ Zr+ × Zn−r+

(3)

Theorem 2.1

P ⊆ T

Corollary 1

For b ∈ P, φ(b) is the optimal value of a pure integer program.
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Scaled IP from Jeroslow

For the example:

φ(b) = min 3x1 +
7

2
x2 + 3x3 +

3

7
x4 +

1

2
x5

s.t. 6x1 + 5x2 − 4x3 +
1

7
x4 −

1

2
x5 = b

x1, x2, x3, x4, x5 ∈ Z+

(Ex.Scaled)

The solutions to the above problem for {[−1, 0] ∪ [4.4, 7.1]}
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Properties of MILP Value Function

Theorem 2.2

For b ∈ P, there exists xI ∈ Zr+ such that AIxI = b.

Theorem 2.3

For b ∈ P, we have

G(b) = φ(b) = φI(b) = min c>I xI

s.t. AIxI = b

xI ∈ Zr+

(IR)

Corollary 2

P ⊆ {AIxI : xI ∈ Zr+}.
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Integer Restriction of an MILP

Bottom Line: The value function of a MILP has discrete structure arising
from the integer restriction and can be constructed without solving the
original MILP.
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Related Algorithms

The algorithmic framework we utilize builds on a number of previous
works.

Modification to the L-shaped framework [Laporte and Louveaux,
1993, Carøe and Tind, 1998, Sen and Higle, 2005]

Linear cuts in first stage for binary first stage
Optimality cuts from B&B and cutting plane, applied to pure integer
second stage
Disjunctive programming approaches and cuts in the second stage

Value function approaches: Pure integer case [Ahmed et al., 2004,
Kong et al., 2006]

Scenario decomposition [Carøe and Schultz, 1998]

Enumeration/Gröbner basis reduction [Schultz et al., 1998]
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Two-Stage Problem and Value Function

Benders’ original method does not apply directly when Y contains
integer variables.

To generalize it, we need lower bounding functions to approximate
the MILP value function.
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Dual Functions

A dual function ϕ : Rm → R ∪ {±∞} is

ϕ(b) ≤ φ(b) ∀b ∈ Λ

For a particular instance b̂, the dual problem is

φD = max{ϕ(b̂) : ϕ(b) ≤ φ(b) ∀b ∈ Rm, ϕ : Rm → R ∪ {±∞}}
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Value Function Reformulation of the Two-Stage Problem

Let

B = {β : β = Tx, x ∈ X}
S1(β) = {x ∈ X : Tx = β}
S2(β) = {Wy = β, y ∈ Y }
ψ(β) = min{c>x : x ∈ S1(β)}
φ(β) = {q>y : y ∈ S2(β)}
f(β) = {ψ(β) + minEs[φ(hs − β)] : β ∈ B}

Then our problem is to determine minβ∈B f(β).
Assumptions:

q, T , and W are fixed.

The dual of the LP relaxation of the recourse problem is feasible, i.e.,

{ν ∈ Rm2 : W>I ν ≤ qI ,W>C ν ≤ qC} 6= ∅

X is non-empty and bounded.
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Generic Integer Benders’ Algorithm

The Algorithm

Step 0. Initialize

a) Set β1 = Tx1 where x1 ∈ argmin{c>x : x ∈ X}
b) Initialize the dual function lists F1 = ∅,Fs = ∅.
c) Set k = 1.

Step 1. Lower bound the problem and check for termination

a) Find optimal dual functions F k1 and F ks for each s ∈ 1 . . . S to ψ(βk)
and φ(hs − βk) respectively.

b) If

max
f1∈F1,fs∈Fs

{f1(βk) + Es[fs(hs − βk)]} = F k1 (βk) + Es[F ks (hs − βk)]

then stop, x∗ ∈ argmin{c>x : x ∈ X,Tx = βk} is an optimal
solution.
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Generic Integer Benders’ Algorithm

Step 2. Update the lower bound

a) Update the dual functions lists: F1 = F1 ∪ F k1 and let
Fs = Fs ∪s∈Ω F

k
s .

b) Solve the problem

zk = min
β∈B

max
f1∈F1,fs∈Fs

{f1(β) + Es[fs(hs − β)]}

and set its optimal solution to βk+1.

c) Go to Step 1.
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MILP Duals from Branch-and-Bound

Let T be set of the terminating nodes of the tree. Then in a terminating
node t ∈ T we solve:

min c>x

s.t. Ax = b,

lt ≤ x ≤ ut, x ≥ 0

(4)

The dual at node t:

max {πtb+ πtlt + π̄tut}
s.t. πtA+ πt + π̄t ≤ c>

π ≥ 0, π̄ ≤ 0

(5)

We obtain the following strong dual function:

min
t∈T
{πtb+ πtlt + π̄tut} (6)
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MILP Duals from Branch-and-Bound

Figure : Dual Functions from B&B for right hand sides 1, 2.125, 3.5
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MILP Duals from Branch-and-Bound
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MILP Duals from Branch-and-Bound
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Master Problem Formulation

Notation:

s, r ∈ {1, . . . , S} where S is the number of scenarios

p ∈ {1, . . . , k} where k is the iteration number

n ∈ {1, . . . , N(s)} where N(s) is the number of terminating nodes in
the B&B tree solved for scenario s.

θs = Fs(β)

tspr = F pr (h(s)− β)

aprn, νprn respectively, the dual vector and intercept obtained from
node n of the B&B tree solved for scenario r in iteration p.

ps probability of scenario s

M > 0 an appropriate large number
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Master Problem Formulation

Solving the second stage problem with B&B, in Step 2, the following
problem is solved to get βk+1 :

fk = min c>x+

S∑
s=1

psθs

s.t. Tx = β

θs ≥ tspr ∀s, p, r
tspr ≤ aprn + ν>prn(h(s)− β) ∀s, r, p, n
tspr ≥ aprn + ν>prn(h(s)− β)−Musprn ∀s, p, r, n
N∑
n=1

usprn = N(s)− 1 ∀s, p, r

x ∈ X,usprn ∈ B ∀s, p, r, n

(master)
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Example

Consider

min f(x) = min − 3x1 − 4x2 +

2∑
s=1

0.5Q(x, s)

s.t. x1 + x2 ≤ 5

x ∈ Z+

(7)

where

Q(x, s) = min 3x1 +
7

2
x2 + 3x3 + 6x4 + 7x5

s.t. 6x1 + 5x2 − 4x3 + 2x4 − 7x5 = h(s)− 2x1 −
1

2
x2

x1, x2, x3 ∈ Z+, x4, x5 ∈ R+

(8)

with h(s) ∈ {−4, 10}.
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Example

Iteration 1

Step 0

F = ∅
k = 1.

Solve
min f(x) = min − 3x1 − 4x2

s.t. x1 + x2 ≤ 5

x1, x2 ∈ Z+

f0 = 20, x∗1 = 0, x∗2 = 5, β1 = 5
2
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Example

Step 1

Solve the second stage problem for each scenario. That is, with
h(1)− β1 = −6.5 and h(2)− β1 = 7.5.
The respective dual functions are

F 1
s=1(β) = min{−β − 1, 0.5β + 10} and
F 1
s=2(β) = min{3β − 15,−0.75β + 14.5}.

Then, F(β) = max{F 1
s=1, F

1
s=2}.

Step 2

Solve the master problem

f1 = min − 3x1 − 4x2 + 0.5(Fs(−4− β) + Fs(10− β))

s.t. x1 + x2 ≤ 5

2x1 +
1

2
x2 = β

x1, x2 ∈ Z+
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Example

The MILP reformulation of the master problem is

min − 3x1 − 4x2 + 0.5θ1 + 0.5θ2

s.t. θs ≥ ts1r s, r ∈ {1, 2}
t11r ≤ a1rn + ν1rn(−4− β) r, n ∈ {1, 2}
t11r ≥ a1rn + ν1rn(−4− β)−Mu11rn r, n ∈ {1, 2}
t21r ≤ a1rn + ν1rn(10− β) r, n ∈ {1, 2}
t21r ≥ a1rn + ν1rn(10− β)−Mu21rn r, n ∈ {1, 2}
u11r1 + u11r2 = 1 r ∈ {1, 2}
u21r1 + u21r2 = 1 r ∈ {1, 2}

2x1 +
1

2
x2 = β

x1, x2 ∈ Z+, us1rn ∈ B s, r, n ∈ {1, 2}
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Example

For example, for t111 = min{−(−4− β)− 1, 0.5(−4− β) + 10} we add:

t111 ≤ −(−4− β)− 1

t111 ≥ −(−4− β)− 1−Mu1111

t111 ≤ 0.5(−4− β) + 10

t111 ≥ 0.5(−4− β) + 10−Mu1112

u1111 + u1112 = 1

The solution to the master problem is f1 = −16.75 with β1 = 7.
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Example

Iteration 2
Step 1

Solve the second stage problem with right hand sides: −11 and 3.

The respective dual functions are:
F 2
s=1(β) = min{−β − 2, 0.5β + 15} and
F 2
s=2(β) = min{3β,−β + 8.5, 0.7β + 5.8}.

Since F(−11) + F(3) < F 2
s=1(−11) + F 2

s=2(3), we continue:

Update F(β) = max{F 1
s=1, F

1
s=2, F

2
s=1, F

2
s=2}.

Step 2

Solve the updated master problem. We obtain f2 = −14.5 with
β2 = 4.
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Example

Iteration 3
Step 1

Solve the second stage problem with right hand sides: −8 and 6.

The respective dual functions are:
F 3
s=1(β) = −0.75β and F 3

s=2(β) = 0.5β.

F(−8) + F(6) = F 3
s=1(−8) + F 3

s=2(6) = 9, the approximation is
exact and the optimal solution to the problem is f3 = −14.5 and
β3 = 4.
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Implementation Challenges

To make the algorithm practical, several issues need to be addressed.

The master problem includes a piecewise linear function which grows
in dimensions.

In each iteration, for a scenario s, S ×N(s) binary variables are
added, where N(s) is the number of new pieces of the function.

Therefore, some “cut pool management” techniques need to be used
to keep the size of the master problem manageable.

This requires using an appropriate database.

The examined right hand sides and their corresponding dual functions
also need to be stored in an efficient manner.
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Implementation for a Single Constrained Recourse

For storing dual functions, a “nested hash table” is used.

The first level of hashing consists of pairs
(key = r.h.s, value = collection of linear pieces of dual function).
the number of terminating nodes of the corresponding B&B tree
determines the number of dual pieces.

The value itself consists of pairs
(key = optimal dual vector of the LP solved in a terminating node,
value = intercept).

Therefore, look ups are cheap.

A linear piece of B&B tree node is only added if it is stronger than
the previously found ones.
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Right Hand Side Modification

Can we do better than blindly solving the master problem to get
candidate right hand sides βk ?

In theory, we get more pieces of the value function by checking for
h(s)− βk ∈ P.

Sensitivity analysis on terminating nodes of the B&B tree tells us
about strong pieces for right hand sides around h(s)− βk.

This allows us to build pieces of the value function locally around the
examined right hand side.
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Conclusions

We aim to develop a practical algorithm for the two-stage problem
with general mixed integer recourse.

The algorithm uses the Benders’ framework.

The master problem suggests right hand sides to the recourse
problem.

We use piece-wise linear dual functions obtained from B&B tree to
approximate the value function of the recourse problem.

For implementation, we are looking for ways to keep the size of the
approximation small.

Cut pool management is needed to restrict the function description to
the local area of interest and discard irrelevant parts.

We are looking for ways to tweak the right hand sides to get stronger
lower bounds.
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