Solving Hard Combinatorial Problems: A Research Overview

Ted Ralphs
Department of Industrial and Manufacturing Systems Engineering
Lehigh University
Bethlehem, PA
Outline of Talk

• Introduction to combinatorial optimization
• Cutting plane methods
• Branch and cut methods
• SYMPHONY
• Future work
Combinatorial Optimization

- A combinatorial optimization problem $CP = (E, \mathcal{F})$ consists of
 - A ground set E,
 - A set $\mathcal{F} \subseteq 2^E$ of feasible solutions, and
 - A cost function $c \in \mathbb{Z}^E$ (optional).

- The cost of $S \in \mathcal{F}$ is $c(S) = \sum_{e \in S} c_e$.

- A subproblem is defined by $S \subseteq \mathcal{F}$.

- Problem: Find a least cost member of \mathcal{F}.
The Traveling Salesman Problem

The TSP is a combinatorial problem \((E, F)\) whose ground set is the edge set of a graph \(G = (V, E)\).

- \(V\) is the set of customers.
- \(E\) is the set of travel links between the customers.

A feasible solution is a permutation \(\sigma\) of \(V\) specifying the order of the customers.

IP Formulation:

\[
\sum_{j=1}^{n} x_{ij} = 2 \quad \forall i \in N^- \\
\sum_{i \in S} x_{ij} \geq 2 \quad \forall S \subset V, \ |S| > 1.
\]

where \(x_{ij}\) is a binary variable indicating \(\sigma(i) = j\).
The Vehicle Routing Problem

In the VRP, we have additional constraints.

- There is a designated depot node (0).
- d is a vector of the customer demands.
- $V^- = V \setminus \{0\}$.
- k is the number of routes.
- C is the capacity of a truck.

A feasible solution is composed of:

- a partition $\{R_1, \ldots, R_k\}$ of V such that $\sum_{j \in R_i} d_j \leq C$, $1 \leq i \leq k$;
- a permutation σ_i of $R_i \cup \{0\}$ specifying the order of the customers on route i.
IP Formulation for the VRP

IP Formulation:

\[
\sum_{j=1}^{n} x_{0j} = 2k \\
\sum_{j=1}^{n} x_{ij} = 2 \quad \forall i \in V^- \\
\sum_{i \in S} x_{ij} \geq 2b(S) \quad \forall S \subset V^-, \ |S| > 1.
\]

\[b(S) = \text{lower bound on the number of trucks required to service } S \text{ (nominally } \lceil (\sum_{i \in S} d_i)/C \rceil).\]

If \(C = \infty\), then we have the Multiple Traveling Salesman Problem.
How hard are these problems?

I don’t know.
How do we solve these hard problems?

• Try to reduce it to something easier
 - Integer Program \Rightarrow Linear Program
 - Divide and conquer

• Use a bigger hammer
 - Faster processors
 - More memory
 - Parallelism
Integer Programming
Cutting Plane Method

- Basic cutting plane algorithm
 - Relax the integrality constraints.
 - Solve the relaxation. Infeasible ⇒ STOP.
 - If \hat{x} integral ⇒ STOP.
 - Separate \hat{x} from P.
 - No cutting planes ⇒ algorithm fails.

- The key is good separation algorithms.
A Separation Algorithm for Side Constraints

- The VRP can be thought of as a side-constrained M-TSP.

- **Key observation**: We can determine in $O(n)$ time whether a particular TSP tour satisfies all the capacity constraints.
VRP Polytope

TSP Polytope

valid inequalities
The Decomposition Algorithm

- Suppose we have two combinatorial problems

\[CP = (E, \mathcal{F}) \]
\[CP' = (E, \mathcal{H}) \]

such that \(\mathcal{H} \subseteq \mathcal{F} \).

- Attempt to decompose a given fractional point \(\hat{x} \) into a convex combination of extreme points of \(\mathcal{P} = \text{conv}(\{x^S : S \in \mathcal{F}\}) \).

- If successful, then examine the extreme points in the linear combination to obtain a set of possibly violated inequalities.

- Otherwise, derive a Farkas inequality that separates \(\hat{x} \) from \(\mathcal{P} \).

- This can be implemented using linear programming with column generation.
If the cutting plane approach fails, then we divide and conquer (branch).
Branch and Cut Tree
SYMPHONY

SYMPHONY is a framework for implementing parallel BCP algorithms.

- It was designed specifically to run in a parallel environment.

- User supplies:
 - the initial LP relaxation,
 - separation subroutines,
 - feasibility checker, and
 - other optional subroutines.

- SYMPHONY handles everything else.

- The source code and documentation are available from www.BranchAndCut.org
The Processes of Parallel Branch and Cut

- Master
- GUI
- Tree Manager
- Cut Generator
- LP Solver
- Cut Pool

Diagram showing the processes of parallel branch and cut with arrows indicating the flow of operations between the components.
Current Status and Future Goals

• SYMPHONY
 - First public release early this year.
 - Registered users at 20 universities.
 - The software is mature and contains advanced features available in specialty codes.
 - Research emphasis is on scalability.
 - Parallel scalability (more processors)
 - Data scalability (solving bigger problems)

• Applications
 - Work on the VRP and the decomposition algorithm are continuing.
 - New techniques from the literature to be incorporated into the VRP software.
 - Need out of the box thinking for the next big breakthrough.
 - Looking for other interesting application areas.