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Motivation

We are interested in the relationship between the VF and the
multi-obj efficient frontier. The value function and the set of
non-dominated points by efficient frontier have the same information
but are presented in two different ways.
Considered an approach for constructing the efficient frontier for a
general multi-objective Mixed Integer Linear Programming (MILP)
problem by exploiting its relationship to the VF.
There is an existing algorithm1 for constructing the full VF of a
general MILP with all varying RHS, but we are interested in the case
in which we have some fixed RHS.
We are targeting the applications in which the frontier is a
constraint (such as bilevel optimization).

1A. Hassanzadeh and T.K. Ralphs. On the Value Function of a Mixed Integer
Linear Optimization Problem and an Algorithm for Its Construction. Tech. rep.
COR@L Laboratory Report 14T-004, Lehigh University, 2014. url:
http://coral.ie.lehigh.edu/˜ted/files/papers/MILPValueFunction14.pdf.
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The relationship between the VF and the efficient frontier

Figure: The Value Function Figure: The bi-objective problem

The efficient frontier is given by points of the form

(cT
I xI + cT

CxC , d
T
I xI + dT

CxC) (1)

where (xI , xC) ∈ (Zr
+ × Rn−r

+ ) is a non-dominated point (NDP).
The graph of the value function is also given by the same pair (1).
Every NDP from the efficient frontier set gives a point on the value
function graph. However, not all points on the value function graph
are NDP.
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Numerical example to show the relationship

z(b) = inf 2x1 + 2x2 + 5x3 + 6x5 + 3x6 + 6x7 + 7y2 + 10y3 + 2y4 + 10y5

−x1 + 3x2 − 9x3 − 3x5 + 9x6 + 2x7 + 10y1 + 8y2 + y3 − 7y4 + 6y5 = b

−x1 + 10x3 + 5x4 + x5 + 4x6 − 3x7 + 9y1 + 3y2 + 2y3 + 6y4 − 10y5 = 4
xi ∈ Z+ ∀i ∈ {1, 2, . . . , 7}
yi ∈ R+ ∀i ∈ {1, 2, . . . , 5}

Figure: The Value Function Figure: The Efficient Frontier

So when we have two minimization objectives, the efficient frontier
is exactly the non-increasing part of the value function.
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Problem Definition
Let the MILP problem as:

zMILP = inf
(xI ,xC)∈X

cT
I xI + cT

CxC ,

where

X = {(xI , xC) ∈ Zr
+ × Rn−r

+ : AIxI +ACxC = d,A′IxI +A′CxC = d′}

The VF of the MILP above:

z(b) = inf
(xI ,xC)∈S(b)

cT
I xI + cT

c xc,

where

S(b) = {(xI , xC) ∈ Zr
+×Rn−r

+ : AIxI +ACxC = b, A′IxI +A′CxC = b′}

SI(b) = {xI ∈ Zr
+ : AIxI +ACxC = b, A′IxI +A′CxC = b′}

SI = ∪b∈BSI(b)

Note that b′ is fixed with the associated dimension.
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Structure of the MILP VF

Let’s consider Continuous Restriction (CR) w.r.t a given x̂I

z̄(b; x̂I) = cT
I x̂I + inf cT

CxC

ACxC = b−AI x̂I

A′CxC = b′ −A′I x̂I

xC ∈ Rn−r
+

Let S(b, x̂I) = {xC ∈ Rn−r
+ : ACxC = b−AI x̂I , A

′
CxC = b′ −A′I x̂I}.

When x̂I = 0, the VF has the same property as the VF of a general LP,
since we have:

zC(b) = inf cT
CxC

ACxC = b
A′CxC = b′

xC ∈ Rn−r
+
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Main property of the MILP value function

Proposition
For any x̂ ∈ SI , z̄(.; x̂) bounds z from above:

z̄(b; x̂) = cT
I x̂+ zC(b−AI x̂) ≥ infx∈SI

cT
I x+ zC(b−AIx) = z(b)

Note that the set of RHS, b ∈ B, is bounded.

Based on the proposition:

z(b) = inf
xI∈SI

z̄(b;xI),

So the MILP VF is the minimum of translated slices of the full LP VF.
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The MILP VF vs restricted LP VF

As we can see the MILP VF is a number of translations of the restricted
LP.
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Proposed Algorithm

Algorithm 1: Value Function Algorithm for a general MILP

Input: z̄(b) =∞ for all b ∈ B, Γ0 =∞, k = 0,
set x0

I as the optimal solution of min cT
I xI + cT

CxC where A′I xI + A′C xC = b′,
xI ∈ Zr

+, xC ∈ Rn−r
+ and set S0 = {x0

I}.
Output: z(b) = z̄(b) ∀b ∈ B.

1 while Γk > 0 do
2 Let z̄(b) = min{z̄(b), z̄(b; xk

I )} for all b ∈ B.
3 k ← k + 1.

4 Solve Γk = max{z̄(b)− cT
I xI − cT

C xC} s.t. AI xI + ACxC = b,

A′I xI + A′C xC = b′, xI ∈ Zr
+, xC ∈ Rn−r

+ , to obtain xk
I .

5 Set Sk ← Sk−1 ∪ {xk
I }.

6 end

So the algorithm only collects the integer parts for constructing the VF
and this is all that is needed for many applications.
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Solving the subproblem (SP)
The subproblem arises in the algorithm can be formulated as a Mixed
Integer Nonlinear Programming (MINLP) as follows:

Γk = max z̄(b)− cT
I xI − cT

CxC

subject to AIxI +ACxC = b
A′IxI +A′CxC = b′

xI ∈ Zr
+, xC ∈ Rn−r

+

For practical purpose the subproblem can be written as:

Γk = max θ
subject to θ ≤ z̄(b)− cT

I xI − cT
CxC

AIxI +ACxC = b
A′IxI +A′CxC = b′

xI ∈ Zr
+, xC ∈ Rn−r

+

We know that in iteration k ≥ 1 of the algorithm we have

z̄(b) = min
i=0,...,k−1

z̄(b;xi
I),
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Solving the SP - Cont.
therefore we have:

θ+ cT
I xI + cT

CxC ≤ cT
I x

i
I + zC(b−AIx

i
I , b
′−A′Ixi

I) ∀i ∈ {0, . . . , k− 1}

Next, we can write zC as:

zC(b−AIx
i
I , b
′ −A′Ixi

I) = sup{(b−AIx
i
I)T vi + (b′ −A′Ixi

I)T v′
i :

AT
Cv

i +A′
T
Cv
′i ≤ cC , (vi, v′

i) ∈ (Rm × Rm
′
)}

Then reformulate each of k constraints as

θ + cT
I xI + cT

CxC ≤ cT
I x

i
I + (b−AIx

i
I)T vi + (b′ −A′Ixi

I)T v′
i

AT
Cv

i +A′
T
Cv
′i ≤ cC

(vi, v′
i) ∈ Rm × Rm

′

Together, in each iteration we solve

Γk = max θ
subject to θ + cT

I xI + cT
CxC ≤ cT

I x
i
I + (AIxI +ACxC −AIx

i
I)T vi+

+(b′ −A′Ixi
I)T v′

i ∀i ∈ {0, . . . , k − 1}
AT

Cv
i +A′

T
Cv
′i ≤ cC ∀i ∈ {0, . . . , k − 1}

A′IxI +A′CxC = b′

(vi, v′
i) ∈ Rm × Rm

′
∀i ∈ {0, . . . , k − 1}

xI ∈ Zr
+, xC ∈ Rn−r

+
θ ∈ R

Note that we can add some slack variables to our reformulation to get the
efficient frontier part of the VF, but it is optional.
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Conclusions

We presented an algorithm for constructing the efficient frontier for
a general MILP with some fixed RHSs.
To the best of our knowledge, this algorithm is being presented for
the first time in literature.
One potential advantage is the algorithm gives a performance
guarantee if we stop early.
We are implementing the MINLP algorithm in Python using the
nonlinear solver Couenne.
We will perform an extensive computational experiment later to
evaluate the effectiveness of the proposed algorithm.
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Future Work

Since the problem is nonlinear, we are targeting a customized
algorithm.
We can develop a warm start heuristic algorithm for solving the
problem at each iteration.
The bilinear terms can be linearized with McCormick inequalities
when all integer variables are binary.
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Questions?

Thank you!
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