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Motivation

m We are interested in the relationship between the VF and the
multi-obj efficient frontier. The value function and the set of
non-dominated points by efficient frontier have the same information
but are presented in two different ways.

m Considered an approach for constructing the efficient frontier for a
general multi-objective Mixed Integer Linear Programming (MILP)
problem by exploiting its relationship to the VF.

m There is an existing algorithm?® for constructing the full VF of a
general MILP with all varying RHS, but we are interested in the case
in which we have some fixed RHS.

m We are targeting the applications in which the frontier is a
constraint (such as bilevel optimization).

1A. Hassanzadeh and T.K. Ralphs. On the Value Function of a Mixed Integer
Linear Optimization Problem and an Algorithm for Its Construction. Tech. rep.
COR®L Laboratory Report 14T-004, Lehigh University, 2014. URL: @

http://coral.ie.lehigh.edu/~ted/files/papers/MILPValueFunctionl4.pdf.
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The relationship between the VF and the efficient frontier

Figure: The Value Function Figure: The bi-objective problem

z(b) =inf clz;+clae
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dlr;+dbze =1
Ty € Z.; To € Riir

inf (cla;+cbre,db ey +dhae)
d’f ry+d éf;z,‘(,v =¥
wp € Zy, xe e R

m The efficient frontier is given by points of the form

(cFay + ctxe,dFxr + dbxe) (1)

where (z1,2¢) € (Z, x R}"") is a non-dominated point (NDP).
m The graph of the value function is also given by the same pair (1).
Every NDP from the efficient frontier set gives a point on the value

function graph. However, not all points on the value function graph
are NDP.
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Numerical example to show the relationship

Z(b) =inf 2z, + 225 + 523 + 6x5 + 3z + 627 + Tya + 10ys + 2y4 + 10ys
—x1 + 3x2 — 93 — 3x5 + 96 + 227 + 10y1 +8y2 + Y3 — Tys + 6ys = b
—x1 4 1023 + bzg + x5 + a6 — 327 + 9y1 + 3y2 + 2ys + 6ys — 10y; = 4
x; €Ly Vie{l,2,...,7}
yieRy Vie{l,2,...,5}

Figure: The Value Function Figure: The Efficient Frontier
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m So when we have two minimization objectives, the efficient frontier @

is exactly the non-increasing part of the value function.
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Problem Definition

Let the MILP problem as:

: T T
ZMILP = inf crxr + coxe,
(zr,xc)EX

where
X ={(zr,2¢) €2, xR : Apzy + Acze = d, Ajz; + Apze = d'}

The VF of the MILP above:

=  inf Ty +cTa,,
z(b) (a."z,xICH)ES(b) crxr +c, e

where
Sb) ={(zr,zc) € Z} xRy : Arzr + Acxe = b, Ajar + Agze =V}
SI(b) = {II S Z:_ : A[Il +ACIC = b7 A/]‘TI +A,CIC _ b/}
St = UpenSr(b)

Note that b’ is fixed with the associated dimension.
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Structure of the MILP VF

Let's consider Continuous Restriction (CR) w.r.t a given &

é(b; ﬁ[) = C?i’[ + inf Cg’xc
Acxc =b— A[(f[
Lac =b — Ahdr
To € Ri_r

Let S(b, .f:[) = {CL'C € Riﬂn cAcxe =b— Ay, AIC:L‘C = - A’Ifc[}
When Z; = 0, the VF has the same property as the VF of a general LP,

since we have:
zo(b) = inf cLac

ACJUC =b
A,Cxc =
xro € Riﬁr
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Main property of the MILP value function

Proposition

For any & € Sy, z(.;&) bounds z from above:

Z(b;2) = T2 + 20(b— A1) > infyes, ¢Fo+ zo(b— Arz) = z(b)
Note that the set of RHS, b € B, is bounded.
Based on the proposition:

z2(b) = inf Z(b;xy),

zr€ST

So the MILP VF is the minimum of translated slices of the full LP VF.
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The MILP VF vs restricted LP VF

As we can see the MILP VF is a number of translations of the restricted
LP.

* MILPVF
* LPVF, CR wrtinetegr x=0

Value function
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Proposed Algorithm

Algorithm 1: Value Function Algorithm for a general MILP

Input: zZ(b) = oo forall b € B, I’ =00, k=0,
set x? as the optimal solution of min c?m; + cgzc where A'I$1 + A’Cx(; =b,
xr; € Z ,xc € RY™" and set SO = {9},

Output: z(b) = z(b) Vb€ B.

1 while I* > 0 do

2 Let Z(b) = min{z(b), 2(b; z¥)} for all b € B.

3 k< k+1.

4 Solve TI'* = max{z(b) — c?:m — cgzc} st. Ajxr + Acxe = b,
Atz + Agze =b', 21 € Z:_,xc € R177‘, to obtain z’}

5 Set Sk« Skl U {zh}.

6 end

So the algorithm only collects the integer parts for constructing the VF
and this is all that is needed for many applications.
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Solving the subproblem (SP)

The subproblem arises in the algorithm can be formulated as a Mixed
Integer Nonlinear Programming (MINLP) as follows:

I'* =max 2(b) — cFo; — clac

subject to Ajx;+ Acxzec =0
Allxj + A/Cxc =
xrr € Z:_,xc S Ri_r

For practical purpose the subproblem can be written as:

I'* =max 6

subject to 0 < Z(b) — ¢l w1 — ctac
A[l‘[ + AC.I’C =b
Arer + Apze =V
xrr € Z:_,:L'C € R:L__T

We know that in iteration k£ > 1 of the algorithm we have

i=0,... . k—1

Z(b) = min z(b;a}), @
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Solving the SP - Cont.

therefore we have:

0+clar+chac < cFab+20(b— A, b — Alah) Vie{0,...,k—1}
Next, we can write z¢ as:

zo(b— Apah b — Ayat) = sup{(b— Arz))Tov' + (0 — Apat) T’ -

ALyt + ATV < co, (v ,0") € (R™ x R™)}

Then reformulate each of k constraints as
0+ cFap 4 chae < cFab 4+ (b— Apay) ol + (0 — Ajat) 0"
ALv' + A/Z;U” <cc
(v, ") € R™ x R™

Together, in each iteration we solve

I'* =max 6
subject to 0+ cFay +chac < cFaf + (Apzr + Acre — Apz)Tol+
(= Apay)To Vi€ {0, k—1}
ALvi 4 A5 <o Vie{0,...,k—1}
Axr+Apze =V

Wi, o) eR™ xR™ Vie{0,... . k—1}
zr €2, xoc €RTT
feR
Note that we can add some slack variables to our reformulation to get the @

efficient frontier part of the VF, but it is optional.
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Conclusions

m We presented an algorithm for constructing the efficient frontier for
a general MILP with some fixed RHSs.

m To the best of our knowledge, this algorithm is being presented for
the first time in literature.

m One potential advantage is the algorithm gives a performance
guarantee if we stop early.

m We are implementing the MINLP algorithm in Python using the
nonlinear solver Couenne.

m We will perform an extensive computational experiment later to
evaluate the effectiveness of the proposed algorithm.
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Future Work

m Since the problem is nonlinear, we are targeting a customized
algorithm.

m We can develop a warm start heuristic algorithm for solving the
problem at each iteration.

m The bilinear terms can be linearized with McCormick inequalities
when all integer variables are binary.
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Questions?

Thank you!
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