Solving Hard Combinatorial Problems: A Research Overview

Ted Ralphs

Department of Industrial and Systems Engineering
Lehigh University, Bethlehem, PA

http://www.lehigh.edu/~tkr2
Outline of Talk

- Introduction to mathematical programming
- Examples of discrete optimization problems
- Methods for discrete optimization
- Current research
What is a model?

model: A schematic description of a system, theory, or phenomenon that accounts for its known or inferred properties and may be used for further study of its characteristics.

–American Heritage Dictionary of the English Language

• Two types of models
 – Concrete
 – Abstract

• Mathematical models
 – Are abstract models
 – Describe the mathematical relationships among elements in a system.
Why do we model systems?

• The exercise of building a model can provide insight.

• It’s possible to do things with models that we can’t do with “the real thing.”

• Analyzing models can help us decide on a course of action.
Examples of Model Types

- Simulation Models
- Probability Models
- Financial Models
- Mathematical Programming Models
Mathematical Programming Models

• What does *mathematical programming* mean?

• Programming here means “planning.”

• Literally, these are “mathematical models for planning.”

• Also called *optimization models*.

• Essential elements
 – Decision variables
 – Constraints
 – Objective Function
 – Parameters and Data
Forming a Mathematical Programming Model

The general form of a *math programming model* is:

\[
\begin{align*}
\text{min or max } & \quad f(x_1, \ldots, x_n) \\
\text{s.t. } & \quad g_i(x_1, \ldots, x_n) \begin{cases}
\leq \\
= \\
\geq
\end{cases} b_i
\end{align*}
\]

We might also require the values of the variables to belong to a discrete set \(X \).
Solutions

- A solution is an assignment of values to variables.
- A solution can be thought of as a vector.
- A feasible solution is an assignment of values to variables such that all the constraints are satisfied.
- The objective function value of a solution is obtained by evaluating the objective function at the given solution.
- An optimal solution (assuming minimization) is one whose objective function value is less than or equal to that of all other feasible solutions.
Types of Mathematical Programs

• The type of a math program is determined primarily by
 – The form of the objective and the constraints.
 – The discrete set X.
 – Whether the input data is considered “known”.

• In this talk, we will consider linear programs.
 – The objective function is linear.
 – The constraints are linear.
 – Linear programs are specified by a cost vector $c \in \mathbb{R}^n$ a constraint matrix $A \in \mathbb{R}^{m \times n}$ and a right-hand side vector $b \in \mathbb{R}^m$ and have the form

\[
\begin{align*}
\min \ c^T x \\
\text{s.t.} \quad Ax &\leq b
\end{align*}
\]
Two Crude Petroleum Example

- Two Crude Petroleum distills crude from two sources:
 - Saudi Arabia
 - Venezuela

- They have three main products:
 - Gasoline
 - Jet fuel
 - Lubricants

- Yields

<table>
<thead>
<tr>
<th></th>
<th>Gasoline</th>
<th>Jet fuel</th>
<th>Lubricants</th>
</tr>
</thead>
<tbody>
<tr>
<td>Saudi Arabia</td>
<td>0.3 barrels</td>
<td>0.4 barrels</td>
<td>0.2 barrels</td>
</tr>
<tr>
<td>Venezuela</td>
<td>0.4 barrels</td>
<td>0.2 barrels</td>
<td>0.3 barrels</td>
</tr>
</tbody>
</table>
Two Crude Petroleum Example (cont.)

• Availability and cost

<table>
<thead>
<tr>
<th></th>
<th>Availability</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Saudi Arabia</td>
<td>9000 barrels</td>
<td>$20/barrel</td>
</tr>
<tr>
<td>Venezuela</td>
<td>6000 barrels</td>
<td>$15/barrel</td>
</tr>
</tbody>
</table>

• Production Requirements (per day)

<table>
<thead>
<tr>
<th></th>
<th>Gasoline</th>
<th>Jet fuel</th>
<th>Lubricants</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2000 barrels</td>
<td>1500 barrels</td>
<td>500 barrels</td>
</tr>
</tbody>
</table>

• **Objective**: Minimize production cost.
Modeling the Two Crude Production Problem

- What are the decision variables?
- What is the objective function?
- What are the constraints?
Modeling the Two Crude Production Problem

• The *decision variables* are the amount of each type of crude to refine.
 \[x_1 = \text{thousands of barrels of Saudi crude refined per day}. \]
 \[x_2 = \text{thousands of barrels of Venezuelan crude refined per day}. \]

• What is the objective function?

• What are the constraints?
Modeling the Two Crude Production Problem

• The decision variables are the amount of each type of crude to refine.
 \[x_1 = \text{thousands of barrels of Saudi crude refined per day.} \]
 \[x_2 = \text{thousands of barrels of Venezuelan crude refined per day.} \]

• The *objective function* is \(20x_1 + 15x_2 \).

• What are the constraints?
Modeling the Two Crude Production Problem

- The decision variables are the amount of each type of crude to refine.
 \[x_1 = \text{thousands of barrels of Saudi crude refined per day.} \]
 \[x_2 = \text{thousands of barrels of Venezuelan crude refined per day.} \]

- The objective function is \(20x_1 + 15x_2 \).

- In words, the \textit{production constraints} are
 \[\sum \text{(yield per barrel)(barrels refined)} \geq \text{production requirements} \]

- In addition, we have \textit{bounds} on the variables.
Linear Programming Formulation of Two Crude Example

• This yields the following LP formulation:

\[
\begin{align*}
\text{min} & \quad 20x_1 + 15x_2 \\
\text{s.t.} & \quad 0.3x_1 + 0.4x_2 \geq 2.0 \\
& \quad 0.4x_1 + 0.2x_2 \geq 1.5 \\
& \quad 0.2x_1 + 0.3x_2 \geq 0.5 \\
& \quad 0 \leq x_1 \leq 9 \\
& \quad 0 \leq x_2 \leq 6
\end{align*}
\]
Solving Linear Programs

• Generally speaking, we can solve linear programs efficiently.

• However, in many situations, the variables must take on discrete values, usually integral values.

• These programs are called integer programs and are an example of a discrete optimization problem.

• Integer programs can be extremely difficult to solve in practice.

• The simplest form of integer programming is combinatorial optimization.

• In a combinatorial problem, all the decisions are yes/no.
Combinatorial Optimization

• A *combinatorial optimization problem* $CP = (E, \mathcal{F})$ consists of

 – A *ground set* E,
 – A set $\mathcal{F} \subseteq 2^E$ of *feasible solutions*, and
 – A *cost function* $c \in \mathbb{Z}^E$ (optional).

• The *cost* of $S \in \mathcal{F}$ is $c(S) = \sum_{e \in S} c_e$.

• A *subproblem* is defined by $S \subseteq \mathcal{F}$.

• **Problem**: Find a least cost member of \mathcal{F}.
Example: Perfect Matching Problem

- We are given a set of n people that need to paired in teams of two.
- Let c_{ij} represent the “cost” of the team formed by person i and person j.
- We wish to minimize the overall cost of the pairings.
- We can represent this problem on an undirected graph $G = (N, E)$.
- The nodes represent the people and the edges represent pairings.
- We have $x_e = 1$ if the endpoints of e are matched, $x_e = 0$ otherwise.

\[
\begin{align*}
\min & \quad \sum_{e = \{i,j\} \in E} c_e x_e \\
\text{s.t.} & \quad \sum_{\{j\mid \{i,j\} \in E\}} x_{ij} = 1, \quad \forall i \in N \\
& \quad x_e \in \{0, 1\}, \quad \forall e = \{i, j\} \in E.
\end{align*}
\]
Fixed-charge Problems

• In many instances, there is a **fixed cost** and a **variable cost** associated with a particular decision.

• **Example**: Fixed-charge Network Flow Problem

 – We are given a directed graph $G = (N, A)$.
 – There is a fixed cost c_{ij} associated with “opening” arc (i, j) (think of this as the cost to “build” the link).
 – There is also a variable cost d_{ij} associated with each unit of flow along arc (i, j).
 – Think of the fixed charge as the construction cost and the variable charge as the operating cost.
 – We want to minimize the sum of these two costs.
Modeling the Fixed-charge Network Flow Problem

• To model the FCNFP, we associate two variables with each arc.

 – \(x_{ij} \) (fixed-charge variable) indicates whether arc \((i, j)\) is open.
 – \(f_{ij} \) (flow variable) represents the flow on arc \((i, j)\).
 – Note that we have to ensure that \(f_{ij} > 0 \Rightarrow x_{ij} = 1 \).

\[
\begin{align*}
\text{Min} & \quad \sum_{(i,j) \in A} c_{ij} x_{ij} + d_{ij} f_{ij} \\
\text{s.t.} & \quad \sum_{j \in O(i)} f_{ij} - \sum_{j \in I(i)} f_{ji} = b_i \quad \forall i \in N \\
\end{align*}
\]

\[
\begin{align*}
& f_{ij} \leq C x_{ij} \quad \forall (i, j) \in A \\
& f_{ij} \geq 0 \quad \forall (i, j) \in A \\
& x_{ij} \in \{0, 1\} \quad \forall (i, j) \in A
\end{align*}
\]
Example: Facility Location Problem

- We are given n potential facility locations and m customers that must be serviced from those locations.
- There is a fixed cost c_j of opening facility j.
- There is a cost d_{ij} associated with serving customer i from facility j.
- We have two sets of binary variables.
 - y_j is 1 if facility j is opened, 0 otherwise.
 - x_{ij} is 1 if customer i is served by facility j, 0 otherwise.

$$\begin{align*}
\min & \sum_{j=1}^{n} c_j y_j + \sum_{i=1}^{m} \sum_{j=1}^{n} d_{ij} x_{ij} \\
\text{s.t.} & \sum_{j=1}^{n} x_{ij} = K & \forall i \\
& x_{ij} \leq y_j & \forall i, j \\
& x_{ij}, y_j \in \{0, 1\} & \forall i, j
\end{align*}$$
The Traveling Salesman Problem

• We are given a set of cities and a cost associated with traveling between each pair of cities.

• We want to find the least cost route traveling through every city and ending up back at the starting city.

• Applications of the Traveling Salesman Problem
 – Drilling Circuit Boards
 – Gene Sequencing
Formulating The Traveling Salesman Problem

The TSP is a combinatorial problem \((E, \mathcal{F})\) whose ground set is the edge set of a graph \(G = (V, E)\).

- \(V\) is the set of customers.
- \(E\) is the set of travel links between the customers.

A feasible solution is a permutation \(\sigma\) of \(V\) specifying the order of the customers. **IP Formulation:**

\[
\begin{align*}
\sum_{j=1}^{n} x_{ij} &= 2 \quad \forall i \in N^- \\
\sum_{\substack{j \in S \\text{ or } j \notin S}} x_{ij} &\geq 2 \quad \forall S \subset V, \ |S| > 1.
\end{align*}
\]

where \(x_{ij}\) is a binary variable indicating \(\sigma(i) = j\).
Example Instance of the TSP
Optimal Solutions to the 48 City Problem
How hard are these problems?

- In practice, these can be extremely difficult.
- The number of possible solutions for the TSP is $n!$ where n is the number of cities.
- We cannot afford to enumerate all these possibilities.
- But there is no direct, efficient way to solve these problems.
How do we solve these hard problems?

- Try to reduce them to something easier
 - Integer Program \Rightarrow Linear Program
 - Divide and conquer

- Use a bigger hammer
 - Faster processors
 - More memory
 - Parallelism
Solving Hard Combinatorial Problems

Integer Programming

- Convex hull of integer solutions
- Linear programming relaxation
Cutting Plane Method

- Basic cutting plane algorithm
 - Relax the integrality constraints.
 - Solve the relaxation. Infeasible \Rightarrow STOP.
 - If \hat{x} integral \Rightarrow STOP.
 - Separate \hat{x} from P.
 - No cutting planes \Rightarrow algorithm fails.

- The key is good separation algorithms.
Branch and Cut Methods

If the cutting plane approach fails, then we divide and conquer (branch).
Branch and Bound

- Suppose F is the feasible region for some MILP and we wish to solve $\min_{x \in F} c^T x$.
- Consider a partition of F into subsets F_1, \ldots, F_k. Then

$$\min_{x \in F} c^T x = \min_{1 \leq i \leq k} \left\{ \min_{x \in F_i} c^T x \right\}$$

- In other words, we can optimize over each subset separately.
- **Idea**: If we can’t solve the original problem directly, we might be able to solve the smaller subproblems recursively.
- Dividing the original problem into subproblems is called branching.
- Taken to the extreme, this scheme is equivalent to complete enumeration.
LP-based Branch and Bound

- In LP-based branch and bound, we first solve the LP relaxation of the original problem. The result is one of the following:

 1. The LP is infeasible \Rightarrow MILP is infeasible.
 2. We obtain a feasible solution for the MILP \Rightarrow optimal solution.
 3. We obtain an optimal solution to the LP that is not feasible for the MILP \Rightarrow upper bound.

- In the first two cases, we are finished.

- In the third case, we must branch and recursively solve the resulting subproblems.
Continuing the Algorithm After Branching

• After branching, we solve each of the subproblems recursively.

• Now we have an additional factor to consider.

• If the optimal solution value to the LP relaxation is greater than the current upper bound, we need not consider the subproblem further.

• This is the key to the efficiency of the algorithm.

• Terminology
 – If we picture the subproblems graphically, they form a search tree.
 – Each subproblem is linked to its parent and eventually to its children.
 – Eliminating a problem from further consideration is called pruning.
 – The act of bounding and then branching is called processing.
 – A subproblem that has not yet been considered is called a candidate for processing.
 – The set of candidates for processing is called the candidate list.
Branch and Bound Tree
Current State of the Art
Current Research

- The **theory** of integer programming is fairly well developed.
- **Computationally**, however, these methods are very difficult to implement effectively.
- Also, each problem requires *different methods of separation*.
- It is therefore extremely expensive to implement an efficient solver for a new application.
- Overcoming these challenges and developing generic solvers capable of automatically analyzing problem structure and performing separation is an active area of research.
- These methods also depend heavily on our ability to obtain good bounds.
- Finding *new/better methods of bounding* is another active research area.
- I am currently involved in research in both of these areas.