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Multilevel and Multistage Games

In game theory terminology, the problems we address are known as finite
extensive-form games, sequential games involving n players.
A subgame is the part of a game that remains after some moves have been made.

Multilevel Game
A game in which n players alternate moves in a fixed sequence (the
well-known case of two players is called a Stackelberg game).
The goal is to find a subgame perfect Nash equilibrium, i.e., the move by
each player that ensures that player’s best outcome.

Multistage/Recourse Game

A cooperative game in which play alternates between cooperating players
and “chance” players.
The goal is to find a subgame perfect Markov equilibrium, i.e., the move
that ensures the best outcome in a probabilistic sense.
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Two-Stage Mixed Integer Optimization

We have the following general formulation:

2SMILP

z2SMILP = min
x∈P1∩X

{cx + Ξ(x)} , (2SMILP)

where
P1 =

{
x ∈ Rn1 | A1x ≥ b1}

is the first-stage feasible region, X = Zr1
+ × Rn1−r1

+ , A1 ∈ Qm1×n1 , and b1 ∈ Rm1 .

X = Zr1
+ × Rn1−r1

+ represents first-stage integrality requirements.

Ξ is the risk function that represents the impact of future uncertainty.

This uncertainty can arise either due to stochasticity or due to the fact that Ξ
represents the reaction of a competitor (or both).

This “risk function” is similar to that utilized in the finance literature.
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Two-stage Mixed Integer Stochastic Bilevel Optimization

The risk function of 2SMISBLPs has the following form.

Canonical Risk Function

Ξ(x) = Eω∈Ω [Ξω(x)] , (RF)

Scenario Risk Function

Ξω(x) = min
{

d1y | y ∈ argmin{d2y | y ∈ P2(b2
ω − A2

ωx) ∩ Y}
}

(2LRF)

ω is a random variable over a finite probability space (Ω,F ,P);

Realizations of ω are called scenarios;

P2(β) = {y ∈ Rn2
+ | Gy ≥ β};

Y = Zr2
+ × Rn2−r2

+ ; and

G ∈ Qm2×n2 , A2
ω ∈ Qm2×n1 for ω ∈ Ω.
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Basic Assumptions

Linking Variables

Definition 1 The set

L =
⋃
ω∈Ω

({
i ∈ {1, . . . , n1}

∣∣ (A2
ω)i 6= 0

})
,

is the set of indices of the linking variables.

In the above, (A2
ω)i denotes the ith column of matrix A2

ω .
xL will denote the sub-vector of x ∈ Rn1 corresponding to the linking variables.
The linking variables are those with non-zero coefficients in the second-stage
problem for at least one scenario.

Assumption 1 L = {1, . . . , k1} for k1 ≤ r1.

Assumption 2 Pω =
{

(x, y) ∈ Rn1×n2
+ | x ∈ P1, y ∈ P2(b2

ω − A2
ωx)
}

is bounded for
ω ∈ Ω.
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Rational Reaction Sets

Corresponding to each x ∈ X, we have the rational reaction set for ω ∈ Ω.

Rational Reaction Set for Scenario ω

Rω(x) = argmin{d2y | y ∈ P2(b2
ω − A2

ωx) ∩ Y}.

For a given x ∈ X,Rω(x) set may be empty because either
P2(b2

ω − A2
ωx) ∩ Y is itself empty or

there exists r ∈ Rn2
+ such that Gr ≥ 0 and d2r < 0.

The latter case cannot occur, since Assumption 2 implies that{
r ∈ Rn2

+ \ {0}
∣∣ Gr ≥ 0

}
= ∅.
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Feasible Regions

The bilevel feasible region for scenario ω with respect to the first- and
second-stage variables in (2LRF) is

Fω = {(x, y) ∈ X × Y | x ∈ P1, y ∈ Rω(x)}.

Members of Fω are called bilevel feasible solutions for scenario ω.
The second-stage problem should be feasible for all scenarios, so the feasible
region with respect to first-stage variables only is

F1 =
⋂
ω∈Ω

projx(Fω).

For x ∈ Rn1 , we have that

x ∈ F1 ⇔ x ∈
⋂
ω∈Ω

projx(Fω)⇔ Rω(x) 6= ∅ ∀ω ∈ Ω⇔ Ξ(x) <∞

and we say that x ∈ Rn1 is feasible if x ∈ F1.
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Feasibility Conditions

The feasibility conditions for scenario ω with respect to the first- and second-stage
variables in (2LRF) are

Feasibility Conditions

Feasibility Condition 1 x ∈ F1

Feasibility Condition 2 yω ∈ Rω(x) for all ω ∈ Ω

Ralphs, et al. (COR@L Lab) Multistage/Multilevel Discrete Optimization



Special Case I: Bilevel (Integer) Linear Optimization

In bilevel optimization, we have |Ω| = 1, so 2SMISBLP can be re-written in the form

Mixed Integer Bilevel Linear Optimization Problem (MIBLP)

min
{

cx + d1y | x ∈ P1 ∩ X, y ∈ argmin{d2y | y ∈ P2(b2 − A2x) ∩ Y}
}
.

(MIBLP)

Alternatively, this corresponds to

Bilevel Risk Function

Ξ(x) = min
{

d1y | y ∈ argmin{d2y | y ∈ P2(b2 − A2x) ∩ Y}
}
.

Note that we drop the subscripts associated with the scenario in this case, but notation
is otherwise, the same.
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Special Case II: Optimization with Recourse

Recourse problems are a special case in which d1 = d2.
In a two-stage stochastic mixed integer optimization problem, we have

Stochastic Risk Function

Ξ(x) = Eω∈Ω

[
φ(b2

ω − A2
ωx)
]
,

where ω is the random variable from probability space (Ω,F ,P) defined earlier.
For each ω ∈ Ω, A2

ω ∈ Qm2×n1 is the realization of the input to the second-stage
problem for scenario ω.
The function φ is the value function of the second-stage MILP.

Second-Stage Value Function

φ(β) = min
{

d2y
∣∣ Gy ≥ β, y ∈ Y

}
∀β ∈ Rm2 . (2S-VF)
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Value Function Reformulation
When Ω represents a discrete and finite space, one way to reformulate 2SMISBLP as
a bilevel problem is as follows.

1 2 3 4 5 6 7 8

1

2

3

4

5

objective

Fω

x

y

Fω
LP

min cx +
∑
ω∈Ω

pωd1yω

subject to A1x ≥ b1

Gyω ≥ b2
ω − A2

ωx ∀ω ∈ Ω∑
ω∈Ω

d2yω ≤
∑
ω∈Ω

φ(b2
ω − A2

ωx)

x ∈ X

yω ∈ Y ∀ω ∈ Ω

where
∑
ω∈Ω

φ(b2
ω − A2

ωx) can be obtained by solving

min
∑
ω∈Ω

d2yω

Gyω ≥ b2
ω − A2

ωx ∀ω ∈ Ω

yω ∈ Y ∀ω ∈ Ω
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Risk Function Reformulation⇒ Generalized Benders’

A second reformulation can be obtained by projecting out the second-stage variables.

min cx +
∑
ω∈Ω

pωzω

subject to zω ≥ Ξω(x)

x ∈ X

We can further simplify this reformulation by noting that Ξω can itself be
rewritten as

Ξω(x) = ρ(b2
ω − A2

ωx)

where
ρ(β) = min

{
d1y | y ∈ argmin{d2y | y ∈ P2(β) ∩ Y}

}
is the (optimistic) reaction function.

This leads to a generalized Benders algorithm obtained by constructing
approximations of ρ dynamically (Benders “cuts”).

We have two implementations of this algorithm ( Hassanzadeh and Ralphs
[2014], Bolusani and Ralphs [2019])
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Polyhedral Reformulation⇒ Branch and Cut

Convexification considers the following conceptual reformulation.

8
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5

1 2 3 4 5 6 7

conv(Sω)

Fω

conv(Fω)

x

y

min cx +
∑
ω∈Ω

pωd1y

s.t. (x, yω) ∈ conv(Fω)

where Sω = Pω ∩ (X × Y) for Pω = {(x, y) ∈ Rn1×n2
+ | A1x ≥ b1,G2y ≥ b2

ω − A2
ωx}

To get bounds, we’ll optimize over a relaxed feasible region.
We’ll iteratively approximate the true feasible region with linear inequalities.
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Branch-and-Cut Algorithm for 2SMISBLPs

The algorithm is based on the framework originally described by DeNegre and
Ralphs [2009], but with many additional enhancements.

The algorithm has been implemented in the MibS framework, which is open
source and available from COIN-OR.

Details are contained in a forthcoming paper by Tahernejad et al. [2019]
(preprint available).

Components

Bounding
Lower bound ⇒ An LP relaxation strengthened with valid inequalities
Upper bound ⇒ Feasible solutions

Feasibility checking

Branching⇒ Several schemes for branching

Search strategies

Preprocessing methods

Primal heuristics
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Lower Bound

Two possible relaxations
1 Removing the optimality constraint of the second-stage problem.

Sω =
{

(x, y) ∈ X × Y
∣∣ A1x ≥ b1,Gy ≥ b2

ω − A2
ωx
}

2 Removing the optimality constraint of the second-stage problem and the
integrality constraints.

Pω =
{

(x, y) ∈ Rn1×n2
+

∣∣ A1x ≥ b1,Gy ≥ b2
ω − A2

ωx
}

Let (xt, y1t, ..., y|Ω|t) be the optimal solution of the relaxation problem at node t.
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Feasibility Checking

(xt, y1t, ..., y|Ω|t) may be bilevel feasible⇒ Feasibility check

(xt, y1t, ..., y|Ω|t) does not satisfy integrality requirements⇒ infeasible

(xt, y1t, ..., y|Ω|t) satisfies integrality requirements

Solve
min

∑
ω∈Ω

d2yω

Gyω ≥ b2
ω − A2

ωxt ∀ω ∈ Ω

yω ∈ Y ∀ω ∈ Ω

to find
∑
ω∈Ω

φ(b2
ω − A2

ωxt)

Let (ŷ1, ..., ŷ|Ω|) be the optimal solution∑
ω∈Ω

d2ŷω =
∑

ω∈Ω
d2yωt ⇒ feasible

∑
ω∈Ω

d2ŷω <
∑

ω∈Ω
d2yωt ⇒ infeasible
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UB Problem

The best bilevel feasible solution with xL = γ ∈ ZL can be obtained by solving
just one MILP.

min{cx +
∑
ω∈Ω

d1yω | x ∈ X,A1x ≥ b1,Gyω ≥ b2
ω − A2

ωx ∀ω ∈ Ω,∑
ω∈Ω

d2yω ≤
∑
ω∈Ω

φ(b2
ω − A2

ωx),

yω ∈ Y ∀ω ∈ Ω, xL = γ}.
(UB)

This can be employed to
find heuristic bilevel feasible solutions.

develop the linking branching strategy, which branches only on linking variables.
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Deterministic Equivalent of 2SMISBLPs

When Ω represents a discrete and finite space, 2SMISBLP can be converted to a
deterministic bilevel problem in the usual way.

min cx +
∑
ω∈Ω

pωd1yω

A1x ≥ b1

Gyω ≥ b2
ω − A2

ωx ∀ω ∈ Ω∑
ω∈Ω

d2yω ≤
∑
ω∈Ω

φ(b2
ω − A2

ωx)

x ∈ X

yω ∈ Y ∀ω ∈ Ω

The deterministic equivalent can be solved by branch-and-cut.

As the number of scenarios increases, so does the difficulty.

The majority of effort is in solving large MIPs required for checking the bilevel
feasibility and for solving problem (UB)
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Decomposition

If (xt, y1t, ..., y|Ω|t) is an optimal solution of the relaxation problem at node t,
checking its feasibility requires solving

min
∑
ω∈Ω

d2yω

Gyω ≥ b2
ω − A2

ωxt ∀ω ∈ Ω

yω ∈ Y ∀ω ∈ Ω

(1)

Due to the block structure of (1), it can be decomposed to |Ω| independent MIPs.G
. . .

G


 y1

...
y|Ω|

 ≥
 b2

1 − A2
1xt

...
b2
|Ω| − A2

|Ω|x
t


Since these small MIPs are independent, their solution can be parallelized.
Problem (UB) can be similarly decomposed unless there are non-linking
first-stage variables.
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Progressive Hedging Heuristic

Find a heuristic solution for 2SMISBLPs by employing the Progressive Hedging
(PH) Algorithm [Rockafellar and Wets, 1991]

It is used only for the 2SMISBLPs with binary first-stage variables to avoid the
non-linear term in the objective of the PH subproblems
The idea is

1 Repeat the PH algorithm until reaching the iteration or time limit or consensus
among all subproblems (PH subproblems are MIBLPs).

2 Let V be the set of first-stage variables whose values are consensus for which
consensus has been reached through the last iteration.

3 Solve the restricted deterministic equivalent of 2SMISBLP obtained by fixing the
values of first-stage variables belonging to the set V .
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Sample Average Approximation (SAA)

The difficulty of solving 2SMISBLPs as a deterministic bilevel problem is
difficult/impossible when |Ω| is large (or infinite).

SAA is a well-known Monte Carlo simulation-based approach in which

N random samples are generated.

The function value is approximated by solving a deterministic problem known as
the SAA problem constructed by restricting to the generated scenarios.

The SAA problem corresponding to 2SMISBLP is

SAAP

zN = min
x∈P1∩X

{
cx +

1
N

N∑
i=1

Ξi(x)

}
, (SAAP)

This procedure is repeated to obtain statistical estimates.

Problem (SAAP) can be solved as a deterministic bilevel problem.
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Software Framework

MibS is an open-source solver in C++ originally for MIBLPs, based on our
branch-and-cut algorithm Tahernejad et al. [2019], DeNegre et al. [2019].
It is built on top of the BLIS solver [Xu et al., 2009].
It employs packages available from the Computational Infrastructure for
Operations Research (COIN-OR) repository

COIN High Performance Parallel Search (CHiPPS): To manage the global
branch-and-bound
SYMPHONY: To solve the required MIPs
COIN LP Solver (CLP): To solve the LPs arising in the branch and cut
Cut Generation Library (CGL): To generate cutting planes within both
SYMPHONY and MibS
Open Solver Interface (OSI): To interface with other solvers

MibS has been generalized to a solver for 2SMISBLPs by adding
function of reading the data files for 2SMISBLPs
option of decomposing the second-stage and UB problems
parallel solution of the decomposed second-stage and UB problems (OpenMP)
PH heuristic
SAA method
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Data Set MIBLP-XU

MIBLP instances from Xu and Wang [2014]:
includes 100 instances

all first-level variables are integer with upper bound 10

second-level variables are continuous with probability 0.5

number of first- and second-level variables are equal

n1 and n2 are in the range of 10-460 with an increments of 50

c, d1 and d2 are within [−50, 50]

All constraint coefficients are within [0, 10]

b1 is within [30, 130] and b2 is within [10, 110]

We changed the instances with n1 ∈ {10, 60} (20 instances) to 2SMISBLPs as
follows.

The coefficients of the second-stage variables in the first-stage constraints are zero.

Elements of A2
ω are discrete uniform random variable on the set {0, 0.5, ..., 10}.

Elements of b2
ω are discrete uniform random variable on the set {10, 10.5, ..., 110}

Instances stocBmilplib-n-i have n first-stage variables and i represents the
instance index
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Data Set sslp

Stochastic Server Location Problem (sslp) [Ntaimo and Sen, 2005] from SIPLIB
test library.

Instances sslp-n-m-k have n locations, m customers and k scenarios.

Ralphs, et al. (COR@L Lab) Multistage/Multilevel Discrete Optimization



Computational Results

Computations were done on compute nodes running the Linux (Debian 8.7)
operating system with dual AMD Opteron 6128 processors and 32 GB RAM.

Time limit was 10 hours for all experiments

All MibS parameters were set to the default values.
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SAA Method

Data set: MIBLP-XU
N ∈ {20, 30, 40}, Evaluation sample size = 200 and Number of replications = 10

N = 20 N = 30 N = 40
Instance Est UB Est Gap σ̂Gap Est UB Est Gap σ̂Gap Est UB Est Gap σ̂Gap

stocBmilplib_10_1 -646.59 35.42 43.72 -646.59 14.45 42.57 -646.59 -1.68 44.71
stocBmilplib_10_2 -99.55 36.36 10.54 -99.55 25.39 8.32 -99.55 22.54 6.78
stocBmilplib_10_3 -232.51 23.83 13.40 -232.51 10.49 13.50 -232.51 8.27 12.85
stocBmilplib_10_4 -181.32 0.96 13.65 -181.32 7.92 12.62 -181.32 13.97 11.07
stocBmilplib_10_5 ∞ —- —- 116.43 37.30 17.88 107.26 -2.35 17.15
stocBmilplib_10_6 -284.90 8.79 12.21 -284.90 0.96 11.09 -284.90 3.34 11.27
stocBmilplib_10_7 -184.71 26.53 29.30 -184.71 19.31 26.98 -184.71 8.58 21.44
stocBmilplib_10_8 -174.15 -4.13 14.15 -174.15 6.19 12.15 -174.15 11.53 11.33
stocBmilplib_10_9 -201.66 21.45 13.26 -201.66 6.78 11.25 -201.66 7.73 11.57
stocBmilplib_10_10 -98.14 19.45 6.79 -98.14 18.13 6.10 -98.14 10.13 4.85
stocBmilplib_60_1 -149.35 1.79 6.01 -149.35 1.80 5.68 -149.35 0.84 5.58
stocBmilplib_60_2 8.07 7.19 7.13 8.07 9.80 7.04 8.07 11.01 7.23
stocBmilplib_60_3 -11.45 19.21 7.61 -11.45 18.42 7.63 -11.45 16.77 7.53
stocBmilplib_60_4 -44.94 16.00 7.83 -42.47 13.40 6.93 -44.94 6.65 7.00
stocBmilplib_60_5 -39.02 7.27 7.83 -39.02 3.75 7.53 -39.02 0.16 7.14
stocBmilplib_60_6 -128.09 10.52 7.61 -128.09 10.28 7.58 -128.09 8.86 7.09
stocBmilplib_60_7 -44.60 -1.09 9.25 -39.53 7.73 8.25 -39.53 6.13 7.55
stocBmilplib_60_8 -82.80 5.41 9.16 -82.80 4.17 8.12 -82.80 1.88 8.08
stocBmilplib_60_9 13.23 5.82 6.87 13.23 3.62 5.70 13.23 1.63 5.62
stocBmilplib_60_10 -102.48 17.95 7.45 -102.48 15.59 7.22 -102.48 14.09 7.23
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UB Problem Decomposition

Data set: MIBLP-XU
Number of scenarios: 40
MIP solver: SYMPHONY

Without

UB Decomp

With

UB Decomp

Instance Gap Time Gap Time
stocBmilplib_60_1 0.0 223.43 0.0 82.50
stocBmilplib_60_2 0.0 624.63 0.0 140.5
stocBmilplib_60_3 0.0 659.91 0.0 164.37
stocBmilplib_60_4 0.0 487.44 0.0 128.18
stocBmilplib_60_5 0.0 372.65 0.0 137.48
stocBmilplib_60_6 0.0 985.46 0.0 142.28
stocBmilplib_60_7 0.0 1032.89 0.0 166.04
stocBmilplib_60_8 0.0 772.68 0.0 163.84
stocBmilplib_60_9 0.0 399.22 0.0 128.29
stocBmilplib_60_10 0.0 241.59 0.0 131.94
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Comparing Alternatives (Stochastic Programming)

1 the D2 algorithm [Ntaimo and Sen, 2005]
2 the PH based branch-and-bound algorithm (PH-BAB) [Atakan and Sen, 2018]

Instance MibS-SYM MibS-CPL D2 PH-BAB
sslp-5-25-50 1.89 1.80 0.53 0.60
sslp-5-25-100 7.78 7.30 1.03 1.20
sslp-10-50-50 181.98 59.53 295.95 9.40
sslp-10-50-100 533.39 169.66 480.46 19.50
sslp-10-50-500 3767.66 2590.51 1902.20 86.10
sslp-10-50-1000 14665.60 12152.36 5410.10 172.4
sslp-10-50-2000 10(h) 10(h) 9055.29 333.10
sslp-15-45-5 55.08 3.80 110.34 2.00
sslp-15-45-10 6.61 5.81 1494.89 10.90
sslp-15-45-15 2044.57 16.03 7210.63 5.400
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PH Heuristic

Data set: sslp
Solving subproblems terminated after finding the first bilevel feasible solution.

Iteration = 3 Iteration = 15 Iteration = 30

Instance
Num

Locations

Without

PH

Num

Fixed

Is

Optimal

Time

Subproblems

Total

Time

Num

Fixed

Is

Optimal

Time

Subproblems

Total

Time

Num

Fixed

Is

Optimal

Time

Subproblems

Total

Time

sslp-5-25-50 5 1.80 1 yes 1.35 2.90 4 yes 5.43 6.13 5 yes 5.98 5.98

sslp-5-25-100 5 7.30 0 — 2.76 10.55 0 — 11.74 19.57 2 yes 20.90 25.18

sslp-10-50-50 10 59.53 0 — 18.59 79.21 0 — 82.92 143.38 0 — 170.92 231.47

sslp-10-50-100 10 169.66 0 — 33.70 208.92 0 — 149.11 324.38 0 — 297.68 473.54

sslp-10-50-500 10 2590.51 0 — 159.86 2936.14 0 — 726.88 3493.54 0 — 1433.61 4211.2

sslp-10-50-1000 10 12152.36 0 — 307.89 13280.50 0 — 1415.21 14743.00 0 — 2870.70 15901.40

sslp-10-50-2000 10 10(h) 0 — 619.36 10(h) 0 — 2765.15 10(h) 0 — 5461.21 10(h)

sslp-15-45-5 15 3.80 11 yes 2.53 4.86 7 no 9.37 10.73 10 No 42.69 50.80

sslp-15-45-10 15 5.81 9 yes 6.24 12.31 6 yes 35.10 43.40 10 yes 91.62 102.50

sslp-15-45-15 15 16.03 8 yes 8.16 19.36 7 yes 58.58 83.60 8 yes 138.12 150.66
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