Multistage/Multilevel Discrete Optimization

Ted Ralphs ${ }^{1}$
Joint work with Suresh Bolusani ${ }^{1}$, Sahar Tahernejad ${ }^{1}$
${ }^{1}$ COR@L Lab, Department of Industrial and Systems Engineering, Lehigh University
ICSP, Trondheim, Norway, July 29, 2019

Multilevel and Multistage Games

- In game theory terminology, the problems we address are known as finite extensive-form games, sequential games involving n players.
- A subgame is the part of a game that remains after some moves have been made.

Multilevel Game

- A game in which n players alternate moves in a fixed sequence (the well-known case of two players is called a Stackelberg game).
- The goal is to find a subgame perfect Nash equilibrium, i.e., the move by each player that ensures that player's best outcome.

Multistage/Recourse Game

- A cooperative game in which play alternates between cooperating players and "chance" players.
- The goal is to find a subgame perfect Markov equilibrium, i.e., the move that ensures the best outcome in a probabilistic sense.

Two-Stage Mixed Integer Optimization

- We have the following general formulation:

2SMILP

$$
\begin{equation*}
z_{2 \text { SMILP }}=\min _{x \in \mathcal{P}_{1} \cap X}\{c x+\Xi(x)\} \tag{2SMILP}
\end{equation*}
$$

where

$$
\mathcal{P}_{1}=\left\{x \in \mathbb{R}^{n_{1}} \mid A^{1} x \geq b^{1}\right\}
$$

is the first-stage feasible region, $X=\mathbb{Z}_{+}^{r_{1}} \times \mathbb{R}_{+}^{n_{1}-r_{1}}, A^{1} \in \mathbb{Q}^{m_{1} \times n_{1}}$, and $b^{1} \in \mathbb{R}^{m_{1}}$.

- $X=\mathbb{Z}_{+}^{r_{1}} \times \mathbb{R}_{+}^{n_{1}-r_{1}}$ represents first-stage integrality requirements.
- Ξ is the risk function that represents the impact of future uncertainty.
- This uncertainty can arise either due to stochasticity or due to the fact that Ξ represents the reaction of a competitor (or both).
- This "risk function" is similar to that utilized in the finance literature.

Two-stage Mixed Integer Stochastic Bilevel Optimization

The risk function of 2SMISBLPs has the following form.

Canonical Risk Function

$$
\begin{equation*}
\Xi(x)=\mathbb{E}_{\omega \in \Omega}\left[\Xi_{\omega}(x)\right] \tag{RF}
\end{equation*}
$$

Scenario Risk Function

$$
\begin{equation*}
\Xi_{\omega}(x)=\min \left\{d^{1} y \mid y \in \operatorname{argmin}\left\{d^{2} y \mid y \in \mathcal{P}_{2}\left(b_{\omega}^{2}-A_{\omega}^{2} x\right) \cap Y\right\}\right\} \tag{2LRF}
\end{equation*}
$$

- ω is a random variable over a finite probability space $(\Omega, \mathscr{F}, \mathcal{P})$;
- Realizations of ω are called scenarios;
- $\mathcal{P}_{2}(\beta)=\left\{y \in \mathbb{R}_{+}^{n_{2}} \mid G y \geq \beta\right\}$;
- $Y=\mathbb{Z}_{+}^{r_{2}} \times \mathbb{R}_{+}^{n_{2}-r_{2}}$; and
- $G \in \mathbb{Q}^{m_{2} \times n_{2}}, A_{\omega}^{2} \in \mathbb{Q}^{m_{2} \times n_{1}}$ for $\omega \in \Omega$.

Basic Assumptions

Linking Variables

Definition 1 The set

$$
L=\bigcup_{\omega \in \Omega}\left(\left\{i \in\left\{1, \ldots, n_{1}\right\} \mid\left(A_{\omega}^{2}\right)_{i} \neq 0\right\}\right)
$$

is the set of indices of the linking variables.

- In the above, $\left(A_{\omega}^{2}\right)_{i}$ denotes the $i^{\text {th }}$ column of matrix A_{ω}^{2}.
- x_{L} will denote the sub-vector of $x \in \mathbb{R}^{n_{1}}$ corresponding to the linking variables.
- The linking variables are those with non-zero coefficients in the second-stage problem for at least one scenario.

Assumption $1 L=\left\{1, \ldots, k_{1}\right\}$ for $k_{1} \leq r_{1}$.

Assumption $2 \mathcal{P}^{\omega}=\left\{(x, y) \in \mathbb{R}_{+}^{n_{1} \times n_{2}} \mid x \in \mathcal{P}_{1}, y \in \mathcal{P}_{2}\left(b_{\omega}^{2}-A_{\omega}^{2} x\right)\right\}$ is bounded for $\omega \in \Omega$.

Rational Reaction Sets

Corresponding to each $x \in X$, we have the rational reaction set for $\omega \in \Omega$.

Rational Reaction Set for Scenario ω

$$
\mathcal{R}^{\omega}(x)=\operatorname{argmin}\left\{d^{2} y \mid y \in \mathcal{P}_{2}\left(b_{\omega}^{2}-A_{\omega}^{2} x\right) \cap Y\right\} .
$$

- For a given $x \in X, \mathcal{R}^{\omega}(x)$ set may be empty because either
- $\mathcal{P}_{2}\left(b_{\omega}^{2}-A_{\omega}^{2} x\right) \cap Y$ is itself empty or
- there exists $r \in \mathbb{R}_{+}^{n_{2}}$ such that $G r \geq 0$ and $d^{2} r<0$.
- The latter case cannot occur, since Assumption 2 implies that $\left\{r \in \mathbb{R}_{+}^{n_{2}} \backslash\{0\} \mid G r \geq 0\right\}=\emptyset$.

Feasible Regions

- The bilevel feasible region for scenario ω with respect to the first- and second-stage variables in (2LRF) is

$$
\mathcal{F}^{\omega}=\left\{(x, y) \in X \times Y \mid x \in \mathcal{P}_{1}, y \in \mathcal{R}^{\omega}(x)\right\} .
$$

- Members of \mathcal{F}^{ω} are called bilevel feasible solutions for scenario ω.
- The second-stage problem should be feasible for all scenarios, so the feasible region with respect to first-stage variables only is

$$
\mathcal{F}_{1}=\bigcap_{\omega \in \Omega} \operatorname{proj}_{x}\left(\mathcal{F}^{\omega}\right)
$$

- For $x \in \mathbb{R}^{n_{1}}$, we have that

$$
x \in \mathcal{F}_{1} \Leftrightarrow x \in \bigcap_{\omega \in \Omega} \operatorname{proj}_{x}\left(\mathcal{F}^{\omega}\right) \Leftrightarrow \mathcal{R}^{\omega}(x) \neq \emptyset \forall \omega \in \Omega \Leftrightarrow \Xi(x)<\infty
$$

and we say that $x \in \mathbb{R}^{n_{1}}$ is feasible if $x \in \mathcal{F}_{1}$.

Feasibility Conditions

The feasibility conditions for scenario ω with respect to the first- and second-stage variables in (2LRF) are

Feasibility Conditions

Feasibility Condition $1 x \in \mathcal{F}_{1}$
Feasibility Condition $2 y^{\omega} \in \mathcal{R}^{\omega}(x)$ for all $\omega \in \Omega$

Special Case I: Bilevel (Integer) Linear Optimization

In bilevel optimization, we have $|\Omega|=1$, so 2SMISBLP can be re-written in the form

Mixed Integer Bilevel Linear Optimization Problem (MIBLP)

$$
\min \left\{c x+d^{1} y \mid x \in \mathcal{P}_{1} \cap X, y \in \operatorname{argmin}\left\{d^{2} y \mid y \in \mathcal{P}_{2}\left(b^{2}-A^{2} x\right) \cap Y\right\}\right\}
$$

Alternatively, this corresponds to

Bilevel Risk Function

$$
\Xi(x)=\min \left\{d^{1} y \mid y \in \operatorname{argmin}\left\{d^{2} y \mid y \in \mathcal{P}_{2}\left(b^{2}-A^{2} x\right) \cap Y\right\}\right\}
$$

Note that we drop the subscripts associated with the scenario in this case, but notation is otherwise, the same.

Special Case II: Optimization with Recourse

- Recourse problems are a special case in which $d^{1}=d^{2}$.
- In a two-stage stochastic mixed integer optimization problem, we have

Stochastic Risk Function

$$
\Xi(x)=\mathbb{E}_{\omega \in \Omega}\left[\phi\left(b_{\omega}^{2}-A_{\omega}^{2} x\right)\right],
$$

where ω is the random variable from probability space $(\Omega, \mathscr{F}, \mathcal{P})$ defined earlier.

- For each $\omega \in \Omega, A_{\omega}^{2} \in \mathbb{Q}^{m_{2} \times n_{1}}$ is the realization of the input to the second-stage problem for scenario ω.
- The function ϕ is the value function of the second-stage MILP.

Second-Stage Value Function

$$
\begin{equation*}
\phi(\beta)=\min \left\{d^{2} y \mid G y \geq \beta, y \in Y\right\} \forall \beta \in \mathbb{R}^{m_{2}} . \tag{2S-VF}
\end{equation*}
$$

Value Function Reformulation

When Ω represents a discrete and finite space, one way to reformulate 2SMISBLP as a bilevel problem is as follows.

where $\sum_{\omega \in \Omega} \phi\left(b_{\omega}^{2}-A_{\omega}^{2} x\right)$ can be obtained by solving

$$
\begin{aligned}
\min & \sum_{\omega \in \Omega} d^{2} y^{\omega} \\
& G y^{\omega} \geq b_{\omega}^{2}-A_{\omega}^{2} x \quad \forall \omega \in \Omega \\
& y^{\omega} \in Y \quad \forall \omega \in \Omega
\end{aligned}
$$

Risk Function Reformulation \Rightarrow Generalized Benders'

A second reformulation can be obtained by projecting out the second-stage variables.

$$
\begin{aligned}
\min & c x+\sum_{\omega \in \Omega} p_{\omega} z_{\omega} \\
\text { subject to } & z_{\omega} \geq \Xi_{\omega}(x) \\
& x \in X
\end{aligned}
$$

- We can further simplify this reformulation by noting that Ξ_{ω} can itself be rewritten as

$$
\Xi_{\omega}(x)=\rho\left(b_{\omega}^{2}-A_{\omega}^{2} x\right)
$$

where

$$
\rho(\beta)=\min \left\{d^{1} y \mid y \in \operatorname{argmin}\left\{d^{2} y \mid y \in \mathcal{P}_{2}(\beta) \cap Y\right\}\right\}
$$

is the (optimistic) reaction function.

- This leads to a generalized Benders algorithm obtained by constructing approximations of ρ dynamically (Benders "cuts").
- We have two implementations of this algorithm (Hassanzadeh and Ralphs [2014], Bolusani and Ralphs [2019])

Polyhedral Reformulation \Rightarrow Branch and Cut

Convexification considers the following conceptual reformulation.

$\min c x+\sum_{\omega \in \Omega} p_{\omega} d^{1} y$
s.t. $\left(x, y^{\omega}\right) \in \operatorname{conv}\left(\mathcal{F}^{\omega}\right)$
where $\mathcal{S}^{\omega}=\mathcal{P}^{\omega} \cap(X \times Y)$ for $\mathcal{P}^{\omega}=\left\{(x, y) \in \mathbb{R}_{+}^{n_{1} \times n_{2}} \mid A_{1} x \geq b_{1}, G^{2} y \geq b_{\omega}^{2}-A_{\omega}^{2} x\right\}$

- To get bounds, we'll optimize over a relaxed feasible region.
- We'll iteratively approximate the true feasible region with linear inequalities.

Branch-and-Cut Algorithm for 2SMISBLPs

- The algorithm is based on the framework originally described by DeNegre and Ralphs [2009], but with many additional enhancements.
- The algorithm has been implemented in the MibS framework, which is open source and available from COIN-OR.
- Details are contained in a forthcoming paper by Tahernejad et al. [2019] (preprint available).

Components

- Bounding
- Lower bound \Rightarrow An LP relaxation strengthened with valid inequalities
- Upper bound \Rightarrow Feasible solutions
- Feasibility checking
- Branching \Rightarrow Several schemes for branching
- Search strategies
- Preprocessing methods
- Primal heuristics

Lower Bound

Two possible relaxations
(1) Removing the optimality constraint of the second-stage problem.

$$
\mathcal{S}^{\omega}=\left\{(x, y) \in X \times Y \mid A^{1} x \geq b^{1}, G y \geq b_{\omega}^{2}-A_{\omega}^{2} x\right\}
$$

(0) Removing the optimality constraint of the second-stage problem and the integrality constraints.

$$
\mathcal{P}^{\omega}=\left\{(x, y) \in \mathbb{R}_{+}^{n_{1} \times n_{2}} \mid A^{1} x \geq b^{1}, G y \geq b_{\omega}^{2}-A_{\omega}^{2} x\right\}
$$

- Let $\left(x^{t}, y^{1 t}, \ldots, y^{|\Omega| t}\right)$ be the optimal solution of the relaxation problem at node t.

Feasibility Checking

$\left(x^{t}, y^{1 t}, \ldots, y^{|\Omega| t}\right)$ may be bilevel feasible \Rightarrow Feasibility check

- $\left(x^{t}, y^{1 t}, \ldots, y^{|\Omega| t}\right)$ does not satisfy integrality requirements \Rightarrow infeasible
- $\left(x^{t}, y^{1 t}, \ldots, y^{|\Omega| t}\right)$ satisfies integrality requirements
- Solve

$$
\begin{aligned}
& \min \sum_{\omega \in \Omega} d^{2} y^{\omega} \\
& \quad G y^{\omega} \geq b_{\omega}^{2}-A_{\omega}^{2} x^{t} \quad \forall \omega \in \Omega \\
& y^{\omega} \in Y \quad \forall \omega \in \Omega
\end{aligned}
$$

$$
\text { to find } \sum_{\omega \in \Omega} \phi\left(b_{\omega}^{2}-A_{\omega}^{2} x^{t}\right)
$$

- Let $\left(\hat{y}^{1}, \ldots, \hat{y}^{|\Omega|}\right)$ be the optimal solution
- $\sum_{\omega \in \Omega} d^{2} \hat{y} \omega=\sum_{\omega \in \Omega} d^{2} y^{\omega t} \Rightarrow$ feasible
- $\sum_{\omega \in \Omega} d^{2} \hat{y}^{\omega}<\sum_{\omega \in \Omega} d^{2} y^{\omega t} \Rightarrow$ infeasible

UB Problem

- The best bilevel feasible solution with $x_{L}=\gamma \in \mathbb{Z}^{L}$ can be obtained by solving just one MILP.

$$
\begin{align*}
& \min \left\{c x+\sum_{\omega \in \Omega} d^{1} y^{\omega} \mid x \in X, A^{1} x \geq b^{1}, G y^{\omega} \geq b_{\omega}^{2}-A_{\omega}^{2} x \forall \omega \in \Omega\right. \\
& \sum_{\omega \in \Omega} d^{2} y^{\omega} \leq \sum_{\omega \in \Omega} \phi\left(b_{\omega}^{2}-A_{\omega}^{2} x\right) \\
&\left.y_{\omega} \in Y \forall \omega \in \Omega, x_{L}=\gamma\right\} \tag{UB}
\end{align*}
$$

- This can be employed to
- find heuristic bilevel feasible solutions.
- develop the linking branching strategy, which branches only on linking variables.

Deterministic Equivalent of 2SMISBLPs

- When Ω represents a discrete and finite space, 2SMISBLP can be converted to a deterministic bilevel problem in the usual way.

$$
\begin{aligned}
& \min \\
& c x+\sum_{\omega \in \Omega} p^{\omega} d^{1} y^{\omega} \\
& A^{1} x \geq b^{1} \\
& G y^{\omega} \geq b_{\omega}^{2}-A_{\omega}^{2} x \quad \forall \omega \in \Omega \\
& \sum_{\omega \in \Omega} d^{2} y^{\omega} \leq \sum_{\omega \in \Omega} \phi\left(b_{\omega}^{2}-A_{\omega}^{2} x\right) \\
& x \in X \\
& \\
& y^{\omega} \in Y \quad \forall \omega \in \Omega
\end{aligned}
$$

- The deterministic equivalent can be solved by branch-and-cut.
- As the number of scenarios increases, so does the difficulty.
- The majority of effort is in solving large MIPs required for checking the bilevel feasibility and for solving problem (UB)

Decomposition

- If $\left(x^{t}, y^{1 t}, \ldots, y^{|\Omega| t}\right)$ is an optimal solution of the relaxation problem at node t, checking its feasibility requires solving

$$
\begin{align*}
\min & \sum_{\omega \in \Omega} d^{2} y^{\omega} \\
& G y^{\omega} \geq b_{\omega}^{2}-A_{\omega}^{2} x^{t} \quad \forall \omega \in \Omega \tag{1}\\
& y^{\omega} \in Y \quad \forall \omega \in \Omega
\end{align*}
$$

- Due to the block structure of (1), it can be decomposed to $|\Omega|$ independent MIPs.

$$
\left[\begin{array}{lll}
G & & \\
& \ddots & \\
& & G
\end{array}\right]\left[\begin{array}{c}
y^{1} \\
\vdots \\
y^{|\Omega|}
\end{array}\right] \geq\left[\begin{array}{c}
b_{1}^{2}-A_{1}^{2} x^{t} \\
\vdots \\
b_{|\Omega|}^{2}-A_{|\Omega|}^{2} x^{t}
\end{array}\right]
$$

- Since these small MIPs are independent, their solution can be parallelized.
- Problem (UB) can be similarly decomposed unless there are non-linking first-stage variables.

Progressive Hedging Heuristic

- Find a heuristic solution for 2SMISBLPs by employing the Progressive Hedging (PH) Algorithm [Rockafellar and Wets, 1991]
- It is used only for the 2SMISBLPs with binary first-stage variables to avoid the non-linear term in the objective of the PH subproblems
- The idea is
(1) Repeat the PH algorithm until reaching the iteration or time limit or consensus among all subproblems (PH subproblems are MIBLPs).
(2) Let V be the set of first-stage variables whose values are consensus for which consensus has been reached through the last iteration.
(3) Solve the restricted deterministic equivalent of 2SMISBLP obtained by fixing the values of first-stage variables belonging to the set V.

Sample Average Approximation (SAA)

- The difficulty of solving 2SMISBLPs as a deterministic bilevel problem is difficult/impossible when $|\Omega|$ is large (or infinite).
- SAA is a well-known Monte Carlo simulation-based approach in which
- N random samples are generated.
- The function value is approximated by solving a deterministic problem known as the SAA problem constructed by restricting to the generated scenarios.
- The SAA problem corresponding to 2SMISBLP is

SAAP

$$
\begin{equation*}
z_{N}=\min _{x \in \mathcal{P}_{1} \cap X}\left\{c x+\frac{1}{N} \sum_{i=1}^{N} \Xi_{i}(x)\right\} \tag{SAAP}
\end{equation*}
$$

- This procedure is repeated to obtain statistical estimates.
- Problem (SAAP) can be solved as a deterministic bilevel problem.

Software Framework

- MibS is an open-source solver in C++ originally for MIBLPs, based on our branch-and-cut algorithm Tahernejad et al. [2019], DeNegre et al. [2019].
- It is built on top of the BLIS solver [Xu et al., 2009].
- It employs packages available from the Computational Infrastructure for Operations Research (COIN-OR) repository
- COIN High Performance Parallel Search (CHiPPS): To manage the global branch-and-bound
- SYMPHONY: To solve the required MIPs
- COIN LP Solver (CLP): To solve the LPs arising in the branch and cut
- Cut Generation Library (CGL): To generate cutting planes within both SYMPHONY and MibS
- Open Solver Interface (OSI): To interface with other solvers
- MibS has been generalized to a solver for 2SMISBLPs by adding
- function of reading the data files for 2SMISBLPs
- option of decomposing the second-stage and UB problems
- parallel solution of the decomposed second-stage and UB problems (OpenMP)
- PH heuristic
- SAA method

Data Set MIBLP - XU

- MIBLP instances from Xu and Wang [2014]:
- includes 100 instances
- all first-level variables are integer with upper bound 10
- second-level variables are continuous with probability 0.5
- number of first- and second-level variables are equal
- n_{1} and n_{2} are in the range of 10-460 with an increments of 50
- c, d^{1} and d^{2} are within $[-50,50]$
- All constraint coefficients are within $[0,10]$
- b^{1} is within $[30,130]$ and b^{2} is within $[10,110]$
- We changed the instances with $n_{1} \in\{10,60\}$ (20 instances) to 2SMISBLPs as follows.
- The coefficients of the second-stage variables in the first-stage constraints are zero.
- Elements of A_{ω}^{2} are discrete uniform random variable on the set $\{0,0.5, \ldots, 10\}$.
- Elements of b_{ω}^{2} are discrete uniform random variable on the set $\{10,10.5, \ldots, 110\}$
- Instances stocBmilplib-n-i have n first-stage variables and i represents the instance index

Data Set sslp

- Stochastic Server Location Problem (sslp) [Ntaimo and Sen, 2005] from SIPLIB test library.
- Instances sslp-n-m-k have n locations, m customers and k scenarios.

Computational Results

- Computations were done on compute nodes running the Linux (Debian 8.7) operating system with dual AMD Opteron 6128 processors and 32 GB RAM.
- Time limit was 10 hours for all experiments
- All Mibs parameters were set to the default values.

SAA Method

- Data set: MIBLP-XU
- $N \in\{20,30,40\}$, Evaluation sample size $=200$ and Number of replications $=10$

Instance	$\mathrm{N}=20$			$\mathrm{N}=30$			$\mathrm{N}=40$		
	Est UB	Est Gap	$\hat{\sigma}_{\text {Gap }}$	Est UB	Est Gap	$\hat{\sigma}_{\text {Gap }}$	Est UB	Est Gap	$\hat{\sigma}_{\text {Gap }}$
stocBmilplib_10_1	-646.59	35.42	43.72	-646.59	14.45	42.57	-646.59	-1.68	44.71
stocBmilplib_10_2	-99.55	36.36	10.54	-99.55	25.39	8.32	-99.55	22.54	6.78
stocBmilplib_10_3	-232.51	23.83	13.40	-232.51	10.49	13.50	-232.51	8.27	12.85
stocBmilplib_10_4	-181.32	0.96	13.65	-181.32	7.92	12.62	-181.32	13.97	11.07
stocBmilplib_10_5	∞	--	-	116.43	37.30	17.88	107.26	-2.35	17.15
stocBmilplib_10_6	-284.90	8.79	12.21	-284.90	0.96	11.09	-284.90	3.34	11.27
stocBmilplib_10_7	-184.71	26.53	29.30	-184.71	19.31	26.98	-184.71	8.58	21.44
stocBmilplib_10_8	-174.15	-4.13	14.15	-174.15	6.19	12.15	-174.15	11.53	11.33
stocBmilplib_10_9	-201.66	21.45	13.26	-201.66	6.78	11.25	-201.66	7.73	11.57
stocBmilplib_10_10	-98.14	19.45	6.79	-98.14	18.13	6.10	-98.14	10.13	4.85
stocBmilplib_60_1	-149.35	1.79	6.01	-149.35	1.80	5.68	-149.35	0.84	5.58
stocBmilplib_60_2	8.07	7.19	7.13	8.07	9.80	7.04	8.07	11.01	7.23
stocBmilplib_60_3	-11.45	19.21	7.61	-11.45	18.42	7.63	-11.45	16.77	7.53
stocBmilplib_60_4	-44.94	16.00	7.83	-42.47	13.40	6.93	-44.94	6.65	7.00
stocBmilplib_60_5	-39.02	7.27	7.83	-39.02	3.75	7.53	-39.02	0.16	7.14
stocBmilplib_60_6	-128.09	10.52	7.61	-128.09	10.28	7.58	-128.09	8.86	7.09
stocBmilplib_60_7	-44.60	-1.09	9.25	-39.53	7.73	8.25	-39.53	6.13	7.55
stocBmilplib_60_8	-82.80	5.41	9.16	-82.80	4.17	8.12	-82.80	1.88	8.08
stocBmilplib_60_9	13.23	5.82	6.87	13.23	3.62	5.70	13.23	1.63	5.62
stocBmilplib_60_10	-102.48	17.95	7.45	-102.48	15.59	7.22	-102.48	14.09	7.23

UB Problem Decomposition

- Data set: MIBLP-XU
- Number of scenarios: 40
- MIP solver: SYMP HONY

	Without UB Decomp				With UB Decomp	
Instance	Gap	Time		Gap	Time	
stocBmilplib_60_1	0.0	223.43		0.0	82.50	
stocBmilplib_60_2	0.0	624.63		0.0	140.5	
stocBmilplib_60_3	0.0	659.91		0.0	164.37	
stocBmilplib_60_4	0.0	487.44		0.0	128.18	
stocBmilplib_60_5	0.0	372.65		0.0	137.48	
stocBmilplib_60_6	0.0	985.46		0.0	142.28	
stocBmilplib_60_7	0.0	1032.89		0.0	166.04	
stocBmilplib_60_8	0.0	772.68		0.0	163.84	
stocBmilplib_60_9	0.0	399.22		0.0	128.29	
stocBmilplib_60_10	0.0	241.59		0.0	131.94	

Comparing Alternatives (Stochastic Programming)

(1) the D^{2} algorithm [Ntaimo and Sen, 2005]
(2) the PH based branch-and-bound algorithm (PH-BAB) [Atakan and Sen, 2018]

Instance	MibS-SYM	MibS-CPL	D^{2}	PH-BAB
sslp-5-25-50	1.89	1.80	0.53	0.60
sslp-5-25-100	7.78	7.30	1.03	1.20
sslp-10-50-50	181.98	59.53	295.95	9.40
sslp-10-50-100	533.39	169.66	480.46	19.50
sslp-10-50-500	3767.66	2590.51	1902.20	86.10
sslp-10-50-1000	14665.60	12152.36	5410.10	172.4
sslp-10-50-2000	$10(\mathrm{~h})$	$10(\mathrm{~h})$	9055.29	333.10
sslp-15-45-5	55.08	3.80	110.34	2.00
sslp-15-45-10	6.61	5.81	1494.89	10.90
sslp-15-45-15	2044.57	16.03	7210.63	5.400

PH Heuristic

- Data set: sslp
- Solving subproblems terminated after finding the first bilevel feasible solution.

Instance	Num Locations	Without PH	Iteration $=3$				Iteration $=15$				Iteration $=30$			
			Num	Is	Time	Total	Num	Is	Time	Total	Num	Is	Time	Total
			Fixed	Optimal	Subproblems	Time	Fixed	Optimal	Subproblems	Time	Fixed	Optimal	Subproblems	Time
sslp-5-25-50	5	1.80	1	yes	1.35	2.90	4	yes	5.43	6.13	5	yes	5.98	5.98
sslp-5-25-100	5	7.30	0	-	2.76	10.55	0	-	11.74	19.57	2	yes	20.90	25.18
sslp-10-50-50	10	59.53	0	-	18.59	79.21	0	-	82.92	143.38	0	-	170.92	231.47
sslp-10-50-100	10	169.66	0	-	33.70	208.92	0	-	149.11	324.38	0	-	297.68	473.54
sslp-10-50-500	10	2590.51	0	-	159.86	2936.14	0	-	726.88	3493.54	0	-	1433.61	4211.2
sslp-10-50-1000	10	12152.36	0	-	307.89	13280.50	0	-	1415.21	14743.00	0	-	2870.70	15901.40
sslp-10-50-2000	10	10(h)	0	-	619.36	10(h)	0	-	2765.15	10(h)	0	-	5461.21	10(h)
sslp-15-45-5	15	3.80	11	yes	2.53	4.86	7	no	9.37	10.73	10	No	42.69	50.80
sslp-15-45-10	15	5.81	9	yes	6.24	12.31	6	yes	35.10	43.40	10	yes	91.62	102.50
sslp-15-45-15	15	16.03	8	yes	8.16	19.36	7	yes	58.58	83.60	8	yes	138.12	150.66

References I

Semih Atakan and Suvrajeet Sen. A progressive hedging based branch-and-bound algorithm for mixed-integer stochastic programs. Computational Management Science, 15(3-4):501-540, 2018.
S. Bolusani and T.K. Ralphs. A Generalized Benders’ Algorithm for Mixed Integer Bilevel Linear Optimization. Technical report, Working Paper, COR@L Laboratory, Lehigh University, 2019. URL http://coral.ie.lehigh. edu/~ted/files/talks/BilevelBenders-MOPTA18.pdf.
S. DeNegre and T.K. Ralphs. A Branch-and-Cut Algorithm for Bilevel Integer Programming. In Proceedings of the Eleventh INFORMS Computing Society Meeting, pages 65-78, 2009. doi: 10.1007/978-0-387-88843-9_4. URL http : //coral.ie.lehigh.edu/~ted/files/papers/BILEVEL08.pdf.
S.T. DeNegre, T.K. Ralphs, and S. Tahernejad. MiBS version 1.1. 2019. doi: 10.5281/zenodo.1439384. URL https://github.com/coin-or/Mibs.

References II

A. Hassanzadeh and T.K. Ralphs. A Generalized Benders' Algorithm for Two-Stage Stochastic Program with Mixed Integer Recourse. Technical report, COR@L Laboratory Report 14T-005, Lehigh University, 2014. URL http: / / coral. ie.lehigh.edu/~ted/files/papers/SMILPGenBenders14.pdf.
Lewis Ntaimo and Suvrajeet Sen. The million-variable march for stochastic combinatorial optimization. Journal of Global Optimization, 32(3):385-400, 2005.
R.T. Rockafellar and R.J.B. Wets. Scenarios and policy aggregation in optimization under uncertainty. Mathematics of operations research, pages 119-147, 1991.
S. Tahernejad, T.K. Ralphs, and S.T. DeNegre. A Branch-and-Cut Algorithm for Mixed Integer Bilevel Linear Optimization Problems and Its Implementation. Mathematical Programming Computation (to appear), 2019. URL http: //coral.ie.lehigh.edu/~ted/files/papers/MIBLP16.pdf.
Pan Xu and Lizhi Wang. An exact algorithm for the bilevel mixed integer linear programming problem under three simplifying assumptions. Computers \& operations research, 41:309-318, 2014.

References III

Y. Xu, T.K. Ralphs, L. Ladányi, and M.J. Saltzman. Computational Experience with a Software Framework for Parallel Integer Programming. The INFORMS Journal on Computing, 21:383-397, 2009. doi: 10.1287/ijoc.1090.0347. URL http: //coral.ie.lehigh.edu/~ted/files/papers/CHiPPS-Rev.pdf.

