Complexity and Multi-level Optimization

Ted Ralphs

Joint work with:
Aykut Bulut, Scott DeNegre,
Andrea Lodi, Fabrizio Rossi, Stefano Smriglio,
Gerhard Woeginger

1COR@L Lab, Department of Industrial and Systems Engineering, Lehigh University
2Technomics, Inc.
4DEIS, Università di Bologna
5Dipartimento di Informatica, Università di L’Aquila
6Department of Mathematics and Computer Science, Eindhoven University of Technology
Outline

1. Introduction
2. Complexity
 - Basic Notions
 - Turing Functions
 - Multi-level Functions
3. Special Optimization Function
 - Separation Functions
 - Inverse Functions
 - Functions in Branch and Cut
Motivation

What started it all: Proving something “obvious”.

CAN YOU PASS THE SALT?

I SAID-

I KNOW! I'M DEVELOPING A SYSTEM TO PASS YOU ARBITRARY CONDIMENTS.

IT'S BEEN 20 MINUTES!

IT'LL SAVE TIME IN THE LONG RUN!
Motivation

- The framework traditionally used for complexity analysis of discrete optimization problems does not extend easily to multi-level optimization.
- “Difficult” optimization problems are typically characterized as being \(NP \)-hard, but this class is far too broad to be useful.
- In the traditional framework, optimization problems are converted into associated decision problems, which
 - results in a less refined classification scheme,
 - does not (directly) include the role of \emph{solutions} and associated \emph{values}, notions that are needed in many settings.
 - is difficult to do with multi-level optimization problems.
- Krentel (1988, 1992) suggested a framework for complexity based on the interpretation of problems as \emph{functions}.
- This point of view is more natural for optimization.
- The point of view adopted here is largely similar to that proposed by Krentel, but there are substantial additions and deviations.
This talk is about questions of complexity that are more general than those that can be asked in the framework traditionally used by discrete optimizers.

The goal of the talk is to develop notions of complexity that
- encompass multi-level and multi-stage optimization problems, and
- are based on a more general framework of function evaluation that is better suited for optimization than the traditional set-based framework.

We’ll discuss two hierarchies that can be used to classify multi-level optimization problems.

- The *polynomial time hierarchy* classifies multi-level decision problems.
- The *min-max hierarchy* classifies multi-level optimization problems.

We’ll discuss the complexity of some special classes of optimization problems in light of this framework.

We’ll also re-interpret some well-known results in terms of this framework.

Finally, we’ll discuss the inherent multi-level nature of some optimization problems that arise in the implementation of branch and cut.
Outline

1. Introduction

2. Complexity
 - Basic Notions
 - Turing Functions
 - Multi-level Functions

3. Special Optimization Function
 - Separation Functions
 - Inverse Functions
 - Functions in Branch and Cut
The formal complexity framework traditionally used in discrete optimization is for classifying *decision problems* (Garey and Johnson, 1979).

The formal model of computation is a *deterministic Turing machine* (DTM).

- A DTM specifies an *algorithm* computing the value of a Boolean function.
- The DTM executes a program, reading the input from a *tape*.
- We equate a given DTM with the program it executes.
- The output is *YES* or *NO*.
- A *YES* answer is returned if the machine reaches an *accepting state*.

A problem is specified in the form of a *language*, defined to be the subset of the possible inputs over a given *alphabet* (Γ) that are expected to output *YES*.

A DTM that produces the correct output for inputs w.r.t. a given language is said to *recognize the language*.

Informally, we can then say that the DTM represents an “algorithm that solves the given problem correctly.”
A non-deterministic Turing machine (NDTM) can be thought of as a Turing machine with an infinite number of parallel processors.

An NDTM follows all possible execution paths simultaneously.

It returns **YES** if an accepting state is reached on *any* path.

The running time of an NDTM is the *minimum* running time (length) of any execution paths that end in an accepting state.

The running time is the minimum time required to verify that some path (given as input) leads to an accepting state.
Languages can be grouped into *classes* based on the *best worst-case running time* of any TM that recognizes the language.

- The class P is the set of all languages for which there exists a DTM that recognizes the language in time polynomial in the length of the input.
- The class NP is the set of all languages for which there exists an NDTM that recognizes the language in time polynomial in the length of the input.
- The class $coNP$ is the set of languages whose complements are in NP.
- As we will see, additional classes are formed hierarchically by the use of *oracles*.

A language L_1 can be *reduced* to a language L_2 if there is an output-preserving polynomial transformation of members of L_1 to members of L_2.

A language L is said to be *complete* for a class if all languages in the class can be reduced to L.

This talk primarily addresses time complexity, though space complexity must ultimately also be considered.
Sets and Complexity

- The view of complexity just described is implicitly based on solutions and sets.
 - A solution (or certificate) can be thought of as a path that can be followed in a TM to reach an accepting state.
 - In many cases, we have a notion of solution that is independent of a particular TM.
 - The YES answer means \exists a solution, i.e., a path to an accepting state was found.
 - The NO answer means no solution was found, i.e., the final terminating state \forall paths was a rejecting one.

- We can say, loosely, that problems in NP pose existentially quantified questions, whereas problems in $coNP$ pose universally quantified questions.

- With any language (and perhaps a TM that recognizes it), we can associate a set of solutions.
 - The set of all possible solutions can be viewed as the feasible set, which we shall denote as $\text{feas}(l)$ for an input l.
 - A YES answer can be said to indicate an instance that is “feasible.”
 - A NO answer can be said to indicate “infeasible.”
Outline

1. Introduction

2. Complexity
 - Basic Notions
 - Turing Functions
 - Multi-level Functions

3. Special Optimization Function
 - Separation Functions
 - Inverse Functions
 - Functions in Branch and Cut
The complexity framework based on decision problems, sets, and feasibility can be generalized to include *functions* and *optimization*.

The functions here are not quite the same as mathematical functions.

We use the term *Turing function* (TF) to refer to this type of “function.”

A TF f is defined with respect to a given language L.

For $l \in L$, there is a (mathematical) function g_l (the *objective function*) that associates each $x \in \text{feas}(l)$ with a value $g_l(x)$.

The objective function may depend on the instance and may be encoded as part of the input.

Evaluating the TF involves both identifying a solution (if it exists) and computing its associated value.

The output of a TF (the solution) is generally not unique—we are allowed to choose any of the alternatives.

In this framework, decision problems are TFs for which the objective is Boolean.
A TF can be evaluated by a TM modified to output a numerical value.

Krentel (1988) called such a TM a *metric Turing machine*, but we use the generic term “Turing machine” to refer to all variants.

Solutions can be encoded into the single output value.

Just as with languages, we can group functions into classes based on the best worst-case running time of a TM for evaluating them.

We can also define notions of *reduction* and *completeness*.

Function Classes

- **FP** is the class of functions for which there exists a DTM that can evaluate the function in time polynomial in the length of the input.
- **FNP** is the class of functions for which there exists a NDTM that can evaluate the function in time polynomial in the length of the input.
- We denote by A^B class of functions that are in complexity class A if we are given an oracle for functions in class B.
Optimization Functions

- Let **MaxA** be the class of TFs for which the accepting states are associated only with solutions of maximum value w.r.t. an underlying TF in class **A**.

- Formally, we define the set **MaxA** of *optimization functions* by

 \[f \in \text{MaxA} \iff f(l) = (x, g_l(x)) \quad \forall l \in L, \]

 where \(x \in \arg\max_{y \in \text{feas}(l)} g_l(y) \) and \(L \) is a language in class **A**.

- We can similarly define **MinA** and **MidA** and \(\text{OptA} = \text{MaxA} \cup \text{MinA} \).
From any TF f, we can construct an associated decision problem as follows.

- We define the *hypograph* of a TF f as

$$\text{hypo}(f) := \{(l, k) \mid \exists x \in \text{feas}(l) \text{ s.t. } g_l(x) \geq k\}$$

- This can be interpreted as a language specifying a decision problem.
- This is the mapping we use to reduce optimization problems to decision problems.
- We can similarly define the hypograph of classes of functions.

Similarly, we can either interpret decision problems as TFs with a Boolean objective or specify a different objective function.
Relationship of Complexity Classes

- **Theorem 1** (*Krentel, 1987*) \(f \in FP^{NP} \) if and only if \(f(l) = h(l, g(l)) \), where \(g \in OptNP \) and \(h \in FP \).
- Roughly, all functions that can be computed in polynomial time with an oracle for a language complete for \(NP \) can be reduced to optimization functions.
- It’s really true that “everything is optimization”!
- We further have (*Vollmer and Wagner, 1995*)

\[
\begin{align*}
NP & = \text{hypo}(\text{MaxNP}) \\
\text{coNP} & = \text{hypo}(\text{MinNP}) \\
PP & = \text{hypo}(\text{MedNP})
\end{align*}
\]

Outline

1. Introduction

2. Complexity
 - Basic Notions
 - Turing Functions
 - Multi-level Functions

3. Special Optimization Function
 - Separation Functions
 - Inverse Functions
 - Functions in Branch and Cut
The polynomial hierarchy is a scheme for classifying multi-level and multi-stage decision problems. We have

\[\Delta^p_0 := \Sigma^p_0 := \Pi^p_0 := P, \]

where \(P \) is the set of decision problems that can be solved in polynomial time. Higher levels are defined recursively as:

\[\Delta^p_{k+1} := P^{\Sigma^p_k}, \]
\[\Sigma^p_{k+1} := NP^{\Sigma^p_k}, \text{ and} \]
\[\Pi^p_{k+1} := coNP^{\Sigma^p_k}. \]

\(PH \) is the union of all levels of the hierarchy.
First Three Levels of the Hierarchy
Collapsing the Hierarchy

In general, we have

\[\Sigma^p_0 \subseteq \Sigma^p_1 \subseteq \ldots \Sigma^p_k \subseteq \ldots \]
\[\Pi^p_0 \subseteq \Pi^p_1 \subseteq \ldots \Pi^p_k \subseteq \ldots \]
\[\Delta^p_0 \subseteq \Delta^p_1 \subseteq \ldots \Delta^p_k \subseteq \ldots \]

It is not known whether any of the inclusions are strict. We do have that

\[(\Sigma^p_k = \Sigma^p_{k+1}) \Rightarrow \Sigma^p_k = \Sigma^p_j \forall j \geq k \]

In particular, if \(P = NP \), then every problem in the \(PH \) is solvable in polynomial time. Similar results hold for the \(\Pi \) and \(\Delta \) hierarchies.
The canonical complete problem in \(PH\) is the \(k\)-player satisfiability game.
- \(k\) players determine the value of a set of Boolean variables with each in control of a specific subset.
- In round \(i\), player \(i\) determines the values of her variables.
- Each player tries to choose values that force a certain end result, given that subsequent players may be trying to achieve the opposite result.

Examples
- \(k = 1\): SAT
- \(k = 2\): The first player tries to choose values such that any choice by the second player will result in satisfaction.
- \(k = 3\): The first player tries to choose values such that the second player cannot choose values that will leave the third player without the ability to find satisfying values.

Note that the odd players and the even players are essentially “working together” and the same game can be described with only two players.
More Formally,

More formally, we are given a Boolean formula with variables partitioned into k sets X_1, \ldots, X_k.

The decision problem

$$\exists X_1 \forall X_2 \exists X_3 \ldots ? X_k$$

is complete for Σ_k^p.

The decision problem

$$\forall X_1 \exists X_2 \forall X_3 \ldots ? X_k$$

is complete for Π_k^p.

A more general form of this problem, known as the quantified Boolean formula problem (QBF) allows an arbitrary sequence of quantifiers.
It is easy to formulate SAT games as multi-level integer programs.

For $k = 1$, SAT can be formulated as the (feasibility) integer program

$$\exists x \in \{0, 1\}^n : \sum_{i \in C_j^0} x_i + \sum_{i \in C_j^1} (1 - x_i) \geq 1 \ \forall j \in J.$$ \hspace{1cm} (SAT)

(SAT) can be re-formulated as the optimization problem

$$\max_{x \in \{0, 1\}^n} \alpha$$

s.t. $\sum_{i \in C_j^0} x_i + \sum_{i \in C_j^1} (1 - x_i) \geq \alpha \ \forall j \in J$

For $k = 2$, we then have

$$\min_{x_{I_1} \in \{0, 1\}^{I_1}} \max_{x_{I_2} \in \{0, 1\}^{I_2}} \alpha$$

s.t. $\sum_{i \in C_j^0} x_i + \sum_{i \in C_j^1} (1 - x_i) \geq \alpha \ \forall j \in J$
Complexity of Multi-Level Optimization

- The reductions on the previous slide can be generalized to k levels.
- For the k-level optimization problem, the optimal value is ≥ 1 if and only if the first player has a winning strategy.
- This means the satisfiability game can be reduced to the (decision) problem of whether the optimal value ≥ 1?
- This decision problem is then complete for Σ^p_k.
- More generally, this means that (the decision version of) k-level mixed integer programming is also complete for Σ^p_k.
- By swapping the “min” and the “max,” we can get a similar decision problem that is complete for Π^p_k.

$$\min_{x_{N_1} \in \{0,1\}^{N_1}} \max_{x_{N_2} \in \{0,1\}^{N_2}} \alpha$$

s.t. $\sum_{i \in C_j^0} x_i + \sum_{i \in C_j^1} (1 - x_i) \geq \alpha \ \forall j \in J$

- The question remains whether the optimal value is ≥ 1, but now we are asking it with respect to a minimization problem.
The Min-Max Hierarchy

- The *Min-Max hierarchy* is a hierarchy of function classes defined by Krentel (1992) mirroring the polynomial hierarchy.

\[\Delta_{0}^{MM} := \Sigma_{0}^{MM} := \Pi_{0}^{MM} := FP, \]

\[\Delta_{k+1}^{MM} := FP \Sigma_{k}^{MM} \cup \Pi_{k}^{MM}, \]

\[\Sigma_{k+1}^{MM} := \text{Max} \Pi_{k}^{MM}, \]

\[\Pi_{k+1}^{MM} := \text{Min} \Sigma_{k}^{MM}. \]

- We can thus more accurately say that \(k \)-level maximization integer programs are complete for \(\Sigma_{k+1}^{MM} \).
Many of the earlier results can be generalized. For example, we have (Vollmer and Wagner, 1995)

\[\Sigma_k^p = \text{hypo}(\Sigma_k^{MM}) \]

Also, any language \(L \in \Delta_{k+1}^p \) can be expressed as \(L = \{ x \mid g(x, f(x)) \} \) for some \(f \in \Sigma_k^{MM} \) and some Boolean function \(g \in FP \) Krentel (1992).
Alternating Turing Machines

- An *alternating Turing machine* (ATM) can directly model the computations required to solve multi-level optimization problems.
- In addition to accepting and rejecting states, these machines have two other special classes of state.
 - The “∨” is accepting if there exists some configuration reachable in one step that is accepting and rejecting otherwise (∃).
 - The “∧” is accepting if all configurations reachable in one step are accepting, and rejecting otherwise (∀).
- Another way of thinking of this is that the final result is obtained by combining the states of all paths using the ∨ and ∧ operators.
- Such a machine can switch between existential and universal quantification and is thus capable of solving multi-level decision problems directly.
- Σ^M_k can be defined as languages recognizable on a machine with at most k alternations on any given path.
- The canonical problem that can be solved by an ATM is the aforementioned QBF problem.
A metric version of an ATM is one for which each branch is associated with a “max” or “min” operator.

The value output by the machine is calculated by combining the values in each accepting state with the “max” and “min” operators.

Metric ATMs can solve general multi-level optimization problems.

Subtrees of the execution tree encode the value functions of lower level problems.
Outline

1. Introduction

2. Complexity
 - Basic Notions
 - Turing Functions
 - Multi-level Functions

3. Special Optimization Function
 - Separation Functions
 - Inverse Functions
 - Functions in Branch and Cut
Separation Functions

- The **membership problem** for a set S and a point x is the decision problem of determining whether $x \in S$.
- An optimization version of this problem is
 \[
 \min_{y \in S} \|y - x\| \quad \text{(SEP)}
 \]
 for norm $\| \cdot \|$.
- We call (SEP) the **separation problem** associated with S.
- The **separation function** associated with $f \in \text{OptA}$, defined over a language L, is an optimization function
 \[
 f_{\text{sep}}^p(x, l) = (y^*, \|y^* - x\|_p),
 \]
 where $y^* \in \arg\min_{y \in \text{feas}(l)} \|y - x\|_p$ for $l \in L$.
- For $f \in \text{OptA}$ with convex feasible set, f_{sep}^2 is closely related to the usual separation problem.
 - From the point y^*, we can obtain a separating hyperplane.
 - There are a number of alternative objective functions that can be employed.
The well-known equivalence of optimization and separation was proven by Grötschel et al. (1988).

This result depends on the interpretation of the separation problem as an optimization problem (we need the separating hyperplane).

Definition 1 If \(f \in \text{OptA} \) is an optimization function defined over a language \(L \), \(f \) is said to have a linear objective if \(\exists d_l \in \mathbb{R}^n \) such that \(g_l(x) = d_l^\top x \) \(\forall x \in \text{feas}(l) \).

We conjecture it is possible to state the result of GLS using functions, roughly as follows.

Conjecture 1 (Grötschel et al., 1988) Let \(f \) be an optimization function defined over a language \(L \). If \(f \) has a linear objective and \(\text{feas}(l) \) is polyhedral for all \(l \in L \), then \(f \in \text{OptA} \iff f_{\text{sep}}^2 \in \text{OptA} \).

We assume \(f_{\text{sep}}^2 \) returns the separating hyperplane, so the complexity of \(f \) implicitly depends on the *facet complexity*.
Outline

1 Introduction

2 Complexity
 - Basic Notions
 - Turing Functions
 - Multi-level Functions

3 Special Optimization Function
 - Separation Functions
 - Inverse Functions
 - Functions in Branch and Cut
An *inverse problem* is one in which we want to determine the input that would produce a given output.

To be more formal, let f be a TF defined over a language L. For a given partial input $l \in \Gamma^*$ and a solution x, an inverse problem associated with f is of the form

$$\exists \hat{l} \in \Gamma^* \text{ s.t. } (\hat{l}, l) \in L \text{ and } f(\hat{l}, l) = (x, g(x))$$

As stated, this is a decision problem with input (l, x).

In principle, it can be solved by an NDTM accepting the language

$$L_{inv} = \{(l, x) \mid \exists \hat{l} \in \Gamma^* \text{ s.t. } (\hat{l}, l) \in L \text{ and } f(\hat{l}, l) = (x, g(x))\}$$

Conjecture 2 If L_{inv} is the language arising from an inverse problem associated with a TF $f \in A$, then $L_{inv} \in NP^A$.
Inverse Functions

- Inverse problems can also be expressed in the form of an optimization problem by requiring a “target” l^* as part of the input.
- The challenge is to find a feasible completion of the input that is as close as possible to the target.
- Formally, we can define an inverse function f_{inv}^p over the language L_{inv} by adding the objective function

$$g(l,x,l^*)(\hat{l}) = ||l - \hat{l}||_p$$

We can generalize the previous conjecture to

Conjecture 3 If L_{inv} is the language arising from an inverse problem associated with a TF $f \in A$, then $f_{inv}^\infty, f_{inv}^1 \in FNPA$.

Special Inverse Problems

- When f has a linear objective function, we assume the objective vector is an explicit part of the input.
- Let a q be the description of a given feasible region, $c \in \mathbb{R}^n$ a given objective function vector, and $x \in \text{feas}(c, q)$.
- Then the inverse problem for the ℓ_∞ norm can be stated as
 \[
 \min \|c - d\|_\infty \\
 \text{s.t. } d^T x \leq d^T y \\
 \forall y \in \text{feas}(c, q)
 \]
- $d \in \mathbb{R}^n$
- This can be linearized, as follows
 \[
 \min z \\
 \text{s.t.} \\
 c_i - d_i \leq z \quad \forall i \in \{1, 2, \ldots, n\} \\
 d_i - c_i \leq z \quad \forall i \in \{1, 2, \ldots, n\} \\
 d^T x \leq d^T y \quad \forall y \in \text{feas}(c, q)
 \]
Theorem 2 Let $f \in MaxA$ be a TF defined over a language L such that $\text{feas}(l)$ is polyhedral for all $l \in L$ and f has a linear objective function. Then $f_{\infty}^{\text{inv}}, f_{1}^{\text{inv}} \in FP^{MaxA} = FP^A$.

Proof: Follows from Theorem 1 (GLS).

Corollary 1 Inverse integer programming with the ℓ_∞ and ℓ_1 norms is in FP^{OptNP}.
1 Introduction

2 Complexity
 - Basic Notions
 - Turing Functions
 - Multi-level Functions

3 Special Optimization Function
 - Separation Functions
 - Inverse Functions
 - Functions in Branch and Cut
Multilevel Nature of Branch and Cut

- Consider an instance of MILP

\[
\text{MILP} \quad \min\{c^\top x \mid x \in P \cap (\mathbb{Z}^p \times \mathbb{R}^{n-p})\},
\]

where \(P = \{x \in \mathbb{R}^n \mid Ax = b\} \), \(A \in \mathbb{Q}^{m \times n} \), \(b \in \mathbb{Q}^m \), \(c \in \mathbb{Q}^n \).

- A *branch-and-cut algorithm* to solve this problem requires the solution of two fundamental problems.

Definition 2 The *separation problem* for a polyhedron \(Q \) is to determine for a given \(\hat{x} \in \mathbb{R}^n \) whether or not \(\hat{x} \in Q \) and if not, to produce an inequality \((\bar{\alpha}, \bar{\beta}) \in \mathbb{R}^{n+1}\) valid for \(Q \) and for which \(\bar{\alpha}^\top \hat{x} < \bar{\beta} \).

Definition 3 The *branching problem* for a set \(S \) is to determine for a given \(\hat{x} \in \mathbb{R}^n \) whether \(\hat{x} \in S \) and if not, to produce a disjunction

\[
\bigvee_{h \in Q} A^h x \geq b^h, \quad x \in S
\]

(1)

that is satisfied by all points in \(S \), but not satisfied by \(\hat{x} \).
Multilevel Structure of the Separation Problem

Often, we wish to select an inequality that maximizes violation, i.e., $(\alpha, 1)$, where

$$\tilde{\alpha} \in \arg\min_{\alpha \in \mathbb{R}^n} \{\alpha^\top \hat{x} \mid \alpha^\top x \geq 1 \ \forall x \in Q\}$$

(2)

To make the problem tractable, we may restrict ourselves to a specific template class of valid inequalities with well-defined structure.

Given a class C, calculation of the right-hand side β required to ensure (α, β) is a member of C may itself be an optimization problem.

The separation problem for the class C with respect to a given $\hat{x} \in \mathbb{R}^n$ can in principle be formulated as the bilevel program:

$$\min \ \alpha^\top \hat{x} - \beta$$

(3)

$$\alpha \in C_{\alpha}$$

(4)

$$\beta = \min_{x \in P_C} \{\alpha^\top x\},$$

(5)

where the set $C_{\alpha} \subseteq \mathbb{R}^n$ is the projection of C into the space of coefficient vectors and P_C is the closure over the class C.
Formulating the Cut Generation Problem

- In other words, C_α is the set of all vectors that are coefficients for some inequality in C.

- The upper-level objective (3) is to find the maximally violated inequality in the class, while the upper-level constraints (4) require that the inequality is a member of the class.

- The lower-level problem (5) is to generate the strongest possible right-hand side associated with a given coefficient vector, i.e., the largest β value among the feasible ones.

- The difficulty of the separation problem depends on the form of the right-hand side generation problem.
Example: Disjunctive cuts

- Given a MIP in the form (MILP), Balas (1979) showed how to derive a valid inequality by exploiting any fixed disjunction

\[\pi^T x \leq \pi_0 \quad \text{OR} \quad \pi^T x \geq \pi_0 + 1 \quad \forall x \in \mathbb{R}^n, \quad (6) \]

where \(\pi \in \mathbb{Z}^n \) and \(\pi_0 \in \mathbb{Z} \).

- A disjunctive inequality is one valid for the convex hull of union of \(P_1 \) and \(P_2 \), obtained by imposing the two terms of the disjunction.

- The separation problem can be written as the following bilevel program:

\[\min \alpha^T \hat{x} - \beta \quad (7) \]

\[\alpha \geq u^T A - u_0 \pi \quad (8) \]

\[\alpha \geq v^T A + v_0 \pi \quad (9) \]

\[u, v, u_0, v_0 \geq 0 \quad (10) \]

\[u_0 + v_0 = 1 \quad (11) \]

\[\beta = \min \{ \alpha^T x \mid x \in P_1 \cup P_2 \} \quad (12) \]
Equation (12) requires β to have the largest value consistent with validity.

To ensure the cut is valid, we need only ensure that

$$\beta \leq \min\{u^\top b - u_0 \pi_0, v^\top b + v_0 (\pi_0 + 1)\}.$$ \hspace{1cm} (13)

Using the standard modeling trick, we can rewrite (13) as

$$\beta \leq u^\top b - u_0 \pi_0 \hspace{1cm} (14)$$

$$\beta \leq v^\top b + v_0 (\pi_0 + 1). \hspace{1cm} (15)$$

The sense of the optimization ensures that (13) holds at equality.

Theorem 3 \textit{For a fixed disjunction (π, π_0), the separation function associated with the disjunctive closure is in FP.}
Example: Capacity Constraints for CVRP

- In the Capacitated Vehicle Routing Problem (CVRP), the capacity constraints are of the form

\[
\sum_{e=\{i,j\} \in E \atop i \in S, j \notin S} x_e \geq 2b(S) \quad \forall S \subset N, \ |S| > 1, \tag{16}
\]

where \(b(S) \) is any lower bound on the number of vehicles required to serve customers in set \(S \).

- By defining binary variables
 - \(y_i = 1 \) if customer \(i \) belongs to \(\bar{S} \), and
 - \(z_e = 1 \) if edge \(e \) belongs to \(\delta(\bar{S}) \),

we obtain the following bilevel formulation for the separation problem:

\[
\begin{align*}
\min & \quad \sum_{e \in E} \hat{x}_e z_e - 2b(\bar{S}) \\
\text{s.t.} & \quad z_e \geq y_i - y_j \quad \forall e \in E \tag{17} \\
& \quad z_e \geq y_j - y_i \quad \forall e \in E \tag{18} \\
& \quad b(\bar{S}) = \max\{b(\bar{S}) \mid b(\bar{S}) \text{ is a valid lower bound}\} \tag{20}
\end{align*}
\]
If the bin packing problem is used in the lower-level, the formulation becomes:

\[
\min \sum_{e \in E} \hat{x}_e z_e - 2b(\bar{S}) \tag{21}
\]

\[
z_e \geq y_i - y_j \quad \forall e = \{i, j\} \tag{22}
\]

\[
z_e \geq y_j - y_i \quad \forall e = \{i, j\} \tag{23}
\]

\[
b(\bar{S}) = \min \sum_{\ell=1}^{n} h_\ell \tag{24}
\]

\[
\sum_{\ell=1}^{n} w_i^\ell = y_i \quad \forall i \in N \tag{25}
\]

\[
\sum_{i \in N} d_i w_i^\ell \leq K h_\ell \quad \ell = 1, \ldots, n, \tag{26}
\]

where we introduce the additional binary variables

- \(w_i^\ell = 1 \) if customer \(i \) is served by vehicle \(\ell \), and
- \(h_\ell = 1 \) if vehicle \(\ell \) is used.
Theorem 4 *The optimization function described by (21)–(26) is in the complexity class Σ^M_2.*

Proof: Reduction to 2-Quantified 1-in-3 SAT.
A typical criteria for selecting a branching disjunction is to maximize the bound increase resulting from imposing the disjunction.

The problem of selecting the disjunction whose imposition results in the largest bound improvement has a natural bilevel structure.

- The upper-level variables can be used to model the choice of disjunction (we’ll see an example shortly).
- The lower-level problem models the bound computation after the disjunction has been imposed.

In strong branching, we are solving this problem essentially by enumeration.

The bilevel branching paradigm is to select the branching disjunction directly by solving a bilevel program.
Example: Interdiction Branching

The following is a bilevel programming formulation for the problem of finding a smallest branching set in interdiction branching:

$$\max \sum c^T x$$

s.t.

$$c^T x \leq \bar{z}$$

$$y \in \mathbb{B}^n$$

$$x \in \text{arg max}\{c^T x \mid x_i + y_i \leq 1 \forall i \in N^a, x \in F^a\}$$

where F^a is the feasible region of a given relaxation of the original problem used for computing the bound.

Conjecture 4 The optimization function described by (27)–(31) is in the complexity class Σ^P_2.
Further Generalizations and Conclusions

- We can generate separation and branching functions of any level in the complexity hierarchy by “looking ahead” multiple levels.
- The separation functions for closures of rank > 1 are also likely in higher levels of the hierarchy.
- The framework presented here seems to be promising in terms of analyzing the complexity of these and related multi-level optimization problems.
- This is a first stab at a general framework, but I’m sure it could use tweaking.
- If you have thoughts, feel free to talk to me.

