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What is Duality?

Duality is a concept that is pervasive in mathematics but it can be hard to define
(“I don’t know what it is, but I know it when I see it!”).
Various notions of duality also arise in optimization and much of the theory
underlying computational methods emerges from it.
Many of the well-known “dualities” that arise in optimization and mathematics
in general are closely connected.
In fact, almost all such duality concepts can be seen as roughly “isomorphic.”
In a sense, any one can be derived from any other.
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Duality Concepts

The following are duality concepts that play a role in optimization theory.

Duality Concepts

Sets: Projection/complement, intersection/union
Conic duality: Cones and their duals, convexity/nonconvexity
Farkas duality: Theorems of the alternative, empty/non-empty
Complexity: Languages and their complements (NP vs. co-NP)
Quantifier duality: Existential versus universal quantification
De Morgan duality: Conjunction versus disjunction
Weyl-Minkowski duality: V representation versus H representation
Polarity: Optimization versus separation
Dual problems: Primal and dual problems in optimization
Inverse problems: Functions and inverses, inverse optimization
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Decision Problems and Complexity

One way of connecting the theory of computation to other parts of mathematics
is by formulating computational problems as problems about sets.
We confine ourselves to problems in the polynomial hierarchy (PH), which is the
categorization typically used for classifying optimization problems.
This scheme applies only to problems for which the result of a computation is
“YES” or “NO.”
It is useful, however, to interpret such a problem as that of trying to prove a
theorem, which must be either “TRUE” or “FALSE”.
In the theory of computation, the formal proof that the answer given by an
algorithm is correct is called a certificate.
By viewing the proof as part of the output, it is easier to see that this class of
problems is in fact very rich.
The notion of a proof is fundamental to how problems are classified in the
PH—higher complexity means longer proofs are expected.
Formal proofs are constructed using the logic of a specific formal system.
Mathematical optimization is a formal system for proving theorems about sets.
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Theorems About Sets

Let S = {x ∈ Qn | P(x)}, where P : Qn → {TRUE,FALSE}.
The simplest question we can ask is whether S is non-empty.

S ?
= ∅. (1)

Given function f and constant K, the related question of whether

S(f ,K) := {x ∈ S | f (x) < K} (2)

is non-empty is the decision version of the optimization problem

min
x∈S

f (x) (OPT)
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Constructing Proofs

What do proofs of such theorems about sets look like?
Certifying S 6= ∅ is easy: produce a point in the set.
Certifying S = ∅ is more difficult in general.

The difficulty of proving a set is empty is most easily seen by re-stating the
theorems we are trying to prove/disprove, as follows.

S 6= ∅ ⇔ ∃x ∈ S
S = ∅ ⇔ ∀x ∈ Qn x /∈ S ⇔ ∀x ∈ Qn x ∈ S̄

The statement that a set is non-empty is existentially quantified, whereas the
statement that a set is empty is universally quantified.
Universally quantified statements are intuitively more difficult to prove than
existentially quantified ones.
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De Morgan Duality

There is a duality between existential and universal quantifiers that can be seen
as one of a number of generalized forms of De Morgan’s Laws.

DeMorgan’s Laws

The complement of the union is the intersection of the complements.

The complement of the intersection is the union of the complements.

These laws can be used to equivalently formulate logical statements in different
dual forms to aid in constructing proofs.

P(x) ∀x ∈ S ⇔ ¬[∃x ∈ S ¬P(x)]⇔ ¬
∨
x∈S
¬P(x)⇔

∧
x∈S

P(x)

∃x ∈ S : P(x)⇔ ¬[∀x ∈ S P(x)]⇔ ¬
∧
x∈S
¬P(x)⇔

∨
x∈S

P(x)

Note also the duality between conjunction and disjunction.
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Convexity and Nonconvexity

Related dualities exist between between conjunction and disjunction, which are
reflected in the way convex and nonconvex sets are described.

Convex sets are described by conjunctive logic: the intersection of convex
sets is convex.

Nonconvex sets are described using disjunctive logic: the union of convex
sets is nonconvex (in general).

This is why there is a short proof that a point is not in a convex set.

The Farkas Lemma and the separating hyperplane theorem in convex
analysis provide methods for generating such proofs.

There is a short proof of emptiness for any set described as the intersection of
simple convex sets, e.g., half-spaces.

Proving a point is not in a nonconvex set is hard, which is why we can’t expect
short proofs of emptiness for disjunctive unions of convex sets.
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Short Proofs of Emptiness

In the case of convex sets, we can use a duality argument to obtain short proofs
of emptiness.
Consider the case of a polyhedron.

P = {x ∈ Qn
+ | Ax = b̃} (3)

Farkas Lemma: P = ∅ ⇔ ∃u ∈ Qm A>u ≤ 0, b̃>u > 0
Equivalently, S = ∅ if and only if we can separate b̃ from the convex cone
C = {b ∈ Qm | ∃x ∈ Qn

+,Ax = b} = {b ∈ Qm : b>u ≤ 0 ∀u ∈ C∗}, where
C∗ = {u ∈ Qm : A>u ≤ 0} (the polar of C).
One way to interpret this procedure is as follows.

We first lift the problem into a higher dimensional space by making b a vector of
variables to obtain a related non-empty set.
Then project out the original variables and apply the separating hyperplane theorem.
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Example

6y1 + 7y2 + 5y3 = 1/2
2y1 − 7y2 + y3 = 1/2

y1, y2, y3 ∈ R+
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Languages

On one level, this is a “trick” for recasting a question of emptiness as one of
non-emptiness (universal→ existential), but there’s a bigger picture.
We are embedding a single theorem into a parametric class containing both
TRUE and FALSE theorems.
The questions we are asking is being re-cast as a question of where this theorem
lies relative to the set of all TRUE theorems (in the class).
To prove the theorem is FALSE, we separate it from the set of theorems that are
TRUE—this is a”dual” proof based on a separation argument.
In the terminology of complexity theory, the set of true theorems is called a
language.
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Proofs of Optimality

The problem (OPT) is not a decision problem as stated.
We can nevertheless build a proof that the optimal solution value is K using
proofs for two related theorems.

1 ∃x ∈ S : f (x) = K

2 @x ∈ S : f (x) < K ⇔ ∀x ∈ S : f (x) ≥ K

The fact that one of these statements is universally quantified is the reason why
short proofs of optimality cannot be expected in general.
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Short Proofs of Optimality

We consider the case of a linear optimization problem (LP).
We can get an LP as follows.

Convert the first row of A from a constraint to the objective function.
Let N = {2, . . . ,m} and b̃N ∈ Qm−1 be all but the first element of b̃.

The problem of finding the optimal value can then be recast as
b∗ = min{b1 ∈ Q | b ∈ C}.
To prove optimality, we need to show that (b∗, b̃N) is not only a member of C,
but on its boundary.

The proof is only slightly modified: ∃u ∈ Qm,A>u ≤ 0, (b∗, b̃N)>u = 0, u1 < 0.

Assume u is scaled so that u1 = −1.
Then we have A>N uN ≤ A>1 , (b̃N)>uN = b∗.
This is equivalent to the usual LP optimality conditions, but also proves that (b∗, b̃N)
is on the boundary of C.

The vector u is a solution to the usual LP dual problem.
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Example

min 6y1 + 7y2 + 5y3

s.t. 2y1 − 7y2 + y3 = 1/2
y1, y2, y3 ∈ R+
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Interpreting

It is not only the theorems in the class that are parametrically related, the proofs
are themselves parametric.
For example, the boundary of the cone C describes a parametric collection of
proofs and has several nice interpretations.

The boundary can be interpreted as specifying the value function of the associated
optimization problem.
The solution to the LP dual problem is a (sub)gradient of this function.
Alternatively, the boundary also encodes the way constraints can be traded off
against each other (the Pareto frontier).

The “dual price” of a given constraint has an economic interpretation when the
constraints are interpreted as allocating resources.
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Example

min 6y1 + 7y2 + 5y3

s.t. 2y1 − 7y2 + y3 = 1/2
y1, y2, y3 ∈ R+
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Mathematical Optimization

The general form of a mathematical optimization problem is:

Form of a General Mathematical Optimization Problem

zMP = min f (x)

s.t. gi(x) ≤ bi, 1 ≤ i ≤ m (MP)
x ∈ X

where X ⊆ Rn may be a discrete set.
The function f is the objective function, while gi is the constraint function
associated with constraint i.
Our primary goal is to compute the optimal value zMP.
However, we may want to obtain some auxiliary information as well.
More importantly, we may want to develop parametric forms of (MP) in which
the input data are the output of some other function or process.
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Economic Interpretation of Duality

The economic viewpoint interprets the variables as representing possible
activities in which one can engage at specific numeric levels.
The constraints represent available resources so that gi(x̂) represents how much
of resource i will be consumed at activity levels x̂ ∈ X.
With each x̂ ∈ X, we associate a cost f (x̂) and we say that x̂ is feasible if
gi(x̂) ≤ bi for all 1 ≤ i ≤ m.
The space in which the vectors of activities live is the primal space.
On the other hand, we may also want to consider the problem from the view
point of the resources in order to ask questions such as

How much are the resources “worth” in the context of the economic system
described by the problem?

What is the marginal economic profit contributed by each existing activity?

What new activities would provide additional profit?

The dual space is the space of resources in which we can frame these questions.
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(Mixed Integer) Linear Optimization

For this part of the talk, we focus on (single-level) mixed integer linear
optimization problems (MILPs).

zIP = min
x∈S

c>x, (MILP)

where c ∈ Rn, S = {x ∈ Zr
+ × Rn−r

+ | Ax = b} with A ∈ Qm×n, b ∈ Rm.

Note that we are using the equality form of constraints to simplify the
presentation.

In this context, we can make the economic concepts just discussed more
concrete.

We can think of each row of A as representing a resource and each column as
representing an activity or product.

For each activity, resource consumption is a linear function of activity level.

We first consider the case r = 0, which is the case of the (continuous) linear
optimization problem (LP).T.K. Ralphs (COR@L Lab) Duality and Discrete Optimization



The LP Value Function

Of central importance in duality theory for linear optimization is the value
function, defined by

φLP(β) = min
x∈S(β)

c>x, (LPVF)

for a given β ∈ Rm, where S(β) = {x ∈ Rn
+ | Ax = β}.

We let φLP(β) =∞ if β ∈ Ω = {β ∈ Rm | S(β) = ∅}.
The value function returns the optimal value as a parametric function of the
right-hand side vector, which represents available resources.
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Economic Interpretation of the Value Function

What information is encoded in the value function?

Consider the gradient u = φ′LP(β) at β for which φLP is continuous.

The quantity u>∆b represents the marginal change in the optimal value if we
change the resource level by ∆b.

In other words, it can be interpreted as a vector of the marginal costs of the
resources.

This is also known as the dual solution vector, but we should really think of
it as a linear function.

In the LP case, the gradient is a linear under-estimator of the value function and
can thus be used to derive bounds on the optimal value for any β ∈ Rm.
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Small Example: Fractional Knapsack Problem

We are given a set N = {1, . . . n} of items and a capacity W.
There is a profit pi and a size wi associated with each item i ∈ N.
We want a set of items that maximizes profit subject to the constraint that their
total size does not exceed the capacity.
In this variant of the problem, we are allowed to take a fraction of an item.
For each item i, let variable xi represent the fraction selected.

Fractional Knapsack Problem

min
n∑

j=1

pjxj

s.t.
n∑

j=1

wjxj ≤ W

0 ≤ xi ≤ 1 ∀i

(4)

What is the optimal solution?
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Generalizing the Knapsack Problem

Let us consider the value function of a (generalized) knapsack problem.

To be as general as possible, we allow sizes, profits, and even the capacity to be
negative.

We also take the capacity constraint to be an equality.

This is a proper generalization.

Example 1
φLP(β) = min 6y1 + 7y2 + 5y3

s.t. 2y1 − 7y2 + y3 = β

y1, y2, y3,∈ R+
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Value Function of the (Generalized) Knapsack Problem

Now consider the value function φLP of Example 1.
What do the gradients of this function represent?

Value Function for Example 1
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The Dual Optimization Problem

Can we calculate the gradient of φLP at b directly?
Note that for any µ ∈ Rm, we have

min
x≥0

[
c>x + µ>(b− Ax)

]
≤ c>x∗ + µ>(b− Ax∗)

= c>x∗

= φLP(b)

and thus we have a lower bound on φLP(b).
With some simplification, we can obtain a more explicit form for this bound.

minx≥0
[
c>x + µ>(b− Ax)

]
= µ>b + minx≥0(c> − µ>A)x

=

{
µ>b, if c> − µ>A ≥ 0>,
−∞, otherwise,
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The Dual Problem (cont’d)

If we now interpret this quantity as a function

g(u, β) =

{
u>β, if c> − u>A ≥ 0>,
−∞, otherwise,

with parameters u and β, then for fixed first parameter, g(·, β) is a linear
under-estimator of φLP.
An LP dual problem is obtained by computing the u ∈ Rm that gives the
under-estimator yielding the strongest bound for a fixed b.

LP Dual Problem

max
µ∈Rm

g(µ, ·) = max b>µ

s.t. µ>A ≤ c> (LPD)

An optimal solution to (LPD) is a (sub)gradient of φLP at b.
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Combinatorial Representation of the LP Value Function

Note that the feasible region of (LPD) does not depend on b.
From the fact that there is always an extremal optimum to (LPD), we conclude
that the LP value function can be described combinatorially.

Combinatorial Representation of the LP Value Function

φLP(β) = max
u∈E

u>β (LPVF)

for β ∈ Rm, where E is the set of extreme points of the dual polyhedron
D = {u ∈ Rm | u>A ≤ c>} (assuming boundedness).
Alternatively, E is also in correspondence with the dual feasible bases of A.

E ≡
{

cBA−1
E | E is the index set of a dual feasible bases of A

}
Thus, we see that epi(φLP) is a polyhedral cone and whose facets correspond to
dual feasible bases of A.
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What is the Importance?

The dual problem is important is because it gives us a set of optimality
conditions.
For a given b ∈ Rm, whenever we have

x∗ ∈ S(b),

u ∈ D, and

c>x∗ = u>b = φLP(b),

then x∗ is optimal!

This means we can write down a set of constraints involving the value function
that ensure optimality.

This set of constraints can then be embedded inside another optimization
problem.
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The MILP Value Function

We now generalize the notions seen so far to the MILP case.
This is quite natural by building on the concept of LP duality we’ve just
developed.
We start by defining the value function associated with the base instance (MILP),
which is

MILP Value Function

φ(β) = min
x∈S(β)

c>x (VF)

for β ∈ Rm, where S(β) = {x ∈ Zr
+ × Rn−r

+ | Ax = β}.
Again, we let φ(β) =∞ if β ∈ Ω = {β ∈ Rm | S(β) = ∅}.
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Example: The (Mixed) Binary Knapsack Problem

We now consider a further generalization of the previously introduced knapsack
problem.

In this problem, we must take some of the items either fully or not at all.

In the example, we allow all of the previously introduced generalizations.

Example 2
φ(β) = min 1

2 x1 + 2x3 + x4

s.t x1 − 3
2 x2 + x3 − x4 = β

x1, x2 ∈ Z+, x3, x4 ∈ R+.
(5)
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Value Function for (Generalized) Mixed Binary Knapsack

Below is the value function of the optimization problem in Example 2.
How do we interpret the structure of this function?

Value Function for Example 2

3

0

φ(β)

β
1-1-2-3 3 42-4 − 3

2 − 1
2− 5

2− 7
2

5
2

3
2

1
2

1
2

3
2

5
2

7
2

1

2
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Properties of the MILP Value Function

The value function is non-convex, lower semi-continuous, and piecewise polyhedral.
Example 3

φ(β) = min x1 −
3
4

x2 +
3
4

x3

s.t.
5
4

x1 − x2 +
1
2

x3 = β

x1, x2 ∈ Z+, x3 ∈ R+

(Ex2.MILP)

T.K. Ralphs (COR@L Lab) Duality and Discrete Optimization



Example: MILP Value Function (Pure Integer)

Example 4
φ(β) = min 3x1 +

7
2

x2 + 3x3 + 6x4 + 7x5 + 5x6

s.t. 6x1 + 5x2 − 4x3 + 2x4 − 7x5 + x6 = β

x1, x2, x3, x4, x5, x6 ∈ Z+
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Another Example

Example 5

φ(β) = min 3x1 +
7
2

x2 + 3x3 + 6x4 + 7x5 + 5x6

s.t. 6x1 + 5x2 − 4x3 + 2x4 − 7x5 + x6 = β

x1, x2, x3 ∈ Z+, x4, x5, x6 ∈ R+
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Another Example (cont’d)

As before, the value function represents the boundary between feasible and infeasible
instances in a parametric family.
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Continuous and Integer Restriction of an MILP

The structure of the value function is inherited from two related functions.

φ(β) = min c>I xI + c>C xC

s.t. AIxI + ACxC = β,

x ∈ Zr
+ × Rn−r

+

(VF)

The two functions are the continuous restriction:

φC(β) = min c>C xC

s.t. ACxC = β,

xC ∈ Rn−r
+

(CR)

for C = {r + 1, . . . , n} and the similarly defined integer restriction:

φI(β) = min c>I xI

s.t. AIxI = β

xI ∈ Zr
+

(IR)

for I = {1, . . . , r}.
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Discrete Representation of the Value Function

For β ∈ Rm, we have that

φ(β) = min c>I xI + φC(β − AIxI)

s.t. xI ∈ Zr
+

(6)

From this we see that the value function is comprised of the minimum of a set of
translations of φC.

The set of shifts, along with φC describe the value function exactly.

For x̂I ∈ Zr
+, let

φC(β, x̂I) = c>I x̂I + φC(β − AI x̂I) ∀β ∈ Rm. (7)

Then we have that φ(β) = minxI∈Zr
+
φC(β, x̂I).
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Value Function of the Continuous Restriction

Example 6
φC(β) = min 6y1 + 7y2 + 5y3

s.t. 2y1 − 7y2 + y3 = β

y1, y2, y3 ∈ R+
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Related Results

From the basic structure outlined, we can derive many other useful results.

Proposition 1. [Hassanzadeh and Ralphs, 2014] The gradient of φ on a
neighborhood of a differentiable point is a unique optimal dual feasible
solution to (CR).

Proposition 2. [Hassanzadeh and Ralphs, 2014] If φ is differentiable over
a connected set N ⊆ Rm, then there exists x∗I ∈ Zr and E ∈ E such that
φ(b) = c>I x∗I + ν>E (b− AIx∗I ) for all b ∈ N .

This last result can be extended to subset of the domain over which φ is convex.
Over such a region, φ coincides with the value function of a translation of the
continuous restriction.
Putting all of together, we get a practical finite representation...
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Points of Strict Local Convexity (Finite Representation)
Example 7

Theorem 1. [Hassanzadeh and Ralphs, 2014]
Under the assumption that {β ∈ Rm | φI(β) <∞} is finite, there exists a finite set
S ⊆ Y such that

φ(β) = min
xI∈S
{c>I xI + φC(β − AIxI)}. (8)
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Interpretation

It is only possible to get a unique linear price function for resource vectors where
the value function is differentiable.

This only happens when the continuous restriction has a unique dual solution at
the current resource vector.

Otherwise, there is no linear price function that will be valid in an epsilon
neighborhood of the current resource vector.

When this function has a gradient, its value is determined only by the continuous
part of the problem!

Thus, these prices reflect behavior over only a very localized region for which
the discrete part of the solution remains constant.
In the case of the generalized knapsack problem, the differentiable points have
the following two properties:

the continuous part of the solution is non-zero (and unique); and

The discrete part of the solution is unique.
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Dual Bounding Functions

A dual function F : Rm → R is one that satisfies F(β) ≤ φ(β) for all β ∈ Rm.
How to select such a function?
We choose may choose one that is easy to construct/evaluate or for which
F(b) ≈ φ(b).
This results in the following generalized dual associated with the base
instance (MILP).

max {F(b) : F(β) ≤ φ(β), β ∈ Rm,F ∈ Υm} (D)

where Υm ⊆ {f | f : Rm→R}
We call F∗ strong for this instance if F∗ is a feasible dual function and
F∗(b) = φ(b).
This dual instance always has a solution F∗ that is strong if the value function is
bounded and Υm ≡ {f | f : Rm→R}. Why?
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Example: LP Relaxation Dual Function
Example 8

FLP(d) = min vd,
s.t 0 ≥ v ≥ − 1

2 , and
v ∈ R,

(9)

which can be written explicitly as

FLP(β) =

{
0, β ≤ 0

− 1
2β, β > 0

.

0 1-1-2-3 3 42-4 − 3
2 − 1

2− 5
2− 7

2

5
2

3
2

1
2

1
2

3
2

5
2

7
2

1

2

3

β

FLP(β)
φ(β)
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The Subadditive Dual

By considering that

F(β) ≤ φ(β) ∀β ∈ Rm ⇐⇒ F(β) ≤ c>x , x ∈ S(β) ∀β ∈ Rm

⇐⇒ F(Ax) ≤ c>x , x ∈ Zn
+,

the generalized dual problem can be rewritten as

max {F(β) : F(Ax) ≤ cx, x ∈ Zr
+ × Rn−r

+ , F ∈ Υm}.

Can we further restrict Υm and still guarantee a strong dual solution?
The class of linear functions? NO!
The class of convex functions? NO!
The class of subadditive functions? YES!

See [Johnson, 1973, 1974, 1979, Jeroslow, 1979] for details.
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The Subadditive Dual

Let a function F be defined over a domain V . Then F is subadditive if
F(v1) + F(v2) ≥ F(v1 + v2)∀v1, v2, v1 + v2 ∈ V .
Note that the value function z is subadditive over Ω. Why?
If Υm ≡ Γm ≡ {F is subadditive | F : Rm→R,F(0) = 0}, we can rewrite the
dual problem above as the subadditive dual

max F(b)

F(aj) ≤ cj j = 1, ..., r,
F̄(aj) ≤ cj j = r + 1, ..., n, and
F ∈ Γm,

where the function F̄ is defined by

F̄(β) = lim sup
δ→0+

F(δβ)

δ
∀β ∈ Rm.

Here, F̄ is the upper β-directional derivative of F at zero.
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Example: Upper β-directional Derivative

The upper β-directional derivative is βu, where u is the gradient at εβ for
sufficiently small ε.
Recall that u is also the (unique) solution to the dual of the continuous restriction.
Therefore, the problem reduces to the LP dual around the origin (and globally, in
the continuous case).

Example 9
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Weak Duality

Weak Duality Theorem

Let x be a feasible solution to the primal problem and let F be a feasible solution
to the subadditive dual. Then, F(b) ≤ c>x.

Proof.

Corollary

For the primal problem and its subadditive dual:
1 If the primal problem (resp., the dual) is unbounded then the dual problem

(resp., the primal) is infeasible.
2 If the primal problem (resp., the dual) is infeasible, then the dual problem

(resp., the primal) is infeasible or unbounded.
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Strong Duality

Strong Duality Theorem

If the primal problem (resp., the dual) has a finite optimum, then so does the
subadditive dual problem (resp., the primal) and they are equal.

Outline of the Proof. Show that the value function φ or an extension of φ is a
feasible dual function.

Note that φ satisfies the dual constraints.
Ω ≡ Rm: φ ∈ Γm.
Ω ⊂ Rm: ∃ φe ∈ Γm with φe(β) = φ(β) ∀β ∈ Ω and ze(β) <∞ ∀β ∈ Rm.
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Example: Subadditive Dual

For the instance in Example 2, the subadditive dual

max F(b)
F(1) ≤ 1

2
F(− 3

2 ) ≤ 0
F̄(1) ≤ 2

F̄(−1) ≤ 1
F ∈ Γ1.

.

and we have the following feasible dual functions:
1 F1(β) = β

2 is an optimal dual function for β ∈ {0, 1, 2, ...}.
2 F2(β) = 0 is an optimal function for β ∈ {...,−3,− 3

2 , 0}.
3 F3(β) = max{ 1

2dβ −
ddβe−βe

4 e, 2d − 3
2dβ −

ddβe−βe
4 e} is an optimal function

for b ∈ {[0, 1
4 ] ∪ [1, 5

4 ] ∪ [2, 9
4 ] ∪ ...}.

4 F4(β) = max{ 3
2d

2β
3 −

2dd 2β
3 e−

2β
3 e

3 e − β,− 3
4d

2β
3 −

2dd 2β
3 e−

2β
3 e

3 e+ β
2 } is an

optimal function for b ∈ {... ∪ [− 7
2 ,−3] ∪ [−2,− 3

2 ] ∪ [− 1
2 , 0]}
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Example: Feasible Dual Functions

Example 10
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Notice how different dual solutions are optimal for some right-hand sides and
not for others.
Only the value function is optimal for all right-hand sides.
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Farkas’ Lemma

For the primal problem, exactly one of the following holds:
1 S 6= ∅
2 There is an F ∈ Γm with F(aj) ≥ 0, j = 1, ..., n, and F(b) < 0.

Proof. Let c = 0 and apply strong duality theorem to subadditive dual.
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Complementary Slackness [Wolsey, 1981]

For a given right-hand side b, let x∗ and F∗ be feasible solutions to the primal
and the subadditive dual problems, respectively. Then x∗ and F∗ are optimal
solutions if and only if

1 x∗j (cj − F∗(aj)) = 0, j = 1, ..., n and
2 F∗(b) =

∑n
j=1 F∗(aj)x∗j .

Proof. For an optimal pair we have

F∗(b) = F∗(Ax∗) =

n∑
j=1

F∗(aj)x∗j = cx∗. (10)
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Optimality Conditions

One reason the dual problem is important is because it gives us a set of
optimality conditions.

Optimality conditions for (MILP)

If x∗ ∈ S, F∗ is feasible for (D), and c>x∗ = F∗(b), then x∗ is an optimal
solution to (MILP) and F∗ is an optimal solution to (D).

These are the optimality conditions achieved in the branch-and-cut algorithm for
MILP that prove the optimality of the primal solution.
The branch-and-bound tree encodes a solution to the dual.
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Approximating the Value Function

In general, it is difficult to construct the value function explicitly.
We therefore propose to approximate the value function by either primal (upper)
or dual (lower) bounding functions.

Dual bounds
Derived by considering the value function of relaxations of the original
problem or by constructing dual functions⇒ Relax constraints.

Primal bounds
Derived by considering the value function of restrictions of the original
problem⇒ Fix variables.
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Primal/Dual Bounding Functions

Dual (Bounding) Functions

Definition 1. A dual (bounding) function F : Rm → R is one that satisfies
F(β) ≤ φ(β) for all β ∈ Rm.

Primal (Bounding ) Functions

Definition 2. A primal (bounding) function F : Rm → R is one that satisfies
F(β) ≥ φ(β) for all β ∈ Rm.

Strong Bounding Functions

Definition 3. A bounding function F is said to be strong at b ∈ Rm if F(b) =
φ(b).
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Strong Primal Bounding Functions

Strong bounding functions can be used algorithmically both to construct the
value function directly and to dynamically construct approximations.
These approximations can be used in algorithms for multi-stage optimization.

Theorem 2. Let x∗ be an optimal solution to the primal problem with right-hand
side b. Then φC(β, x∗I ) is a strong primal bounding function at b.

By repeatedly evaluating φI(β), we can obtain upper approximations (and
eventually the full value function).
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Benders-like Algorithm for Upper Approximation

Algorithm

Initialize: Let φ̄(b) =∞ for all b ∈ B, Γ0 =∞, x0
I = 0, S0 = {x0

I }, and k = 0.
while Γk > 0 do:

Let φ̄(β)← min{φ̄(β), φ̄(β; xk
I )} for all β ∈ Rm.

k← k + 1.
Solve

Γk = max
β∈Rm

φ̄(β)− c>I xI

s.t. AIxI = b

xI ∈ Zr
+.

(SP)

to obtain xk
I .

Set Sk ← Sk−1 ∪ {xk}
end while
return φ(b) = φ̄(b) for all b ∈ B.
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Algorithm for Upper Approximation

f5

d

z

b1 b2 b3 b4 b5

f1

f2

f3

f4

Figure 1: Upper bounding functions obtained at right-hand sides bi, i = 1, . . . , 5.
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Formulating (SP)

Surprisingly, the “cut generation” problem (SP) can be formulated easily as an
MINLP.

Γk = max θ

s.t. θ + c>I xI ≤ c>I xi
I + (AIxI − AIxi

I)
>ν i i = 1, . . . , k − 1

A>C ν
i ≤ cC i = 1, . . . , k − 1

ν i ∈ Rm i = 1, . . . , k − 1
xI ∈ Zr

+.

(11)
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Sample Computational Results

Figure 2: Normalized approximation gap vs. iteration number.

http://github.com/tkralphs/ValueFunction
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Dual Bounding Functions Revisited

A dual function F : Rm → R is one that satisfies F(β) ≤ φ(β) for all β ∈ Rm.
How to select such a function?
We choose may choose one that is easy to construct/evaluate or for which
F(b) ≈ φ(b).
This results in the following generalized dual associated with the base
instance (MILP).

max {F(b) : F(β) ≤ φ(β), β ∈ Rm,F ∈ Υm} (D)

where Υm ⊆ {f | f : Rm→R}
We call F∗ strong for this instance if F∗ is a feasible dual function and
F∗(b) = φ(b).
This dual instance always has a solution F∗ that is strong if the value function is
bounded and Υm ≡ {f | f : Rm→R}. Why?
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Dual Functions from Branch and Bound

Recall that a dual function F : Rm → R is one that satisfies F(β) ≤ φ(β) for all
β ∈ Rm.
Observe that any branch-and-bound tree yields a lower approximation of the
value function.
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Dual Functions from Branch-and-Bound [Wolsey, 1981]

Let T be set of the terminating nodes of the tree. Then in a terminating node t ∈ T we
solve:

φt(β) = min c>x

s.t. Ax = β,

lt ≤ x ≤ ut, x ≥ 0

(12)

The dual at node t:

φt(β) = max {πtβ + πtlt + π̄tut}
s.t. πtA + πt + π̄t ≤ c>

π ≥ 0, π̄ ≤ 0

(13)

We obtain the following strong dual function:

min
t∈T
{π̂tβ + π̂tlt + ˆ̄πtut}, (14)

where (π̂t, π̂t, ˆ̄πt) is an optimal solution to the dual (BB.LP.D).
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Interpreting Branch and Bound as a Dual Method

An alternative way of viewing branch and bound is simply as a method of
iteratively refining a single overall disjunction (or dual function).
The dual function arising from the branch-and-bound tree is

φT
LP

(β) = min
t∈T

φt
LP

(β) = min
t∈T
{π̂tβ + π̂tlt + ˆ̄πtut} (BB.D)

where (π̂t, π̂t, ˆ̄πt) is an optimal solution to the following dual at node t.

φt(b) = max πtb + πtlt + π̄tut

s.t. πtA + πt + π̄t ≤ c>

π ≥ 0, π̄ ≤ 0

(BB.LP.D)

When we branch, we remove one linear function from the above minimum and
replace it with the minimum of two others.
Depending on how we choose the disjunction, this will hopefully improve the
bound yielded by the dual function.
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Example: Branching as Dual Improvement

Recall the following value function associated with an MILP from the earlier
example.

φ(β) = min 6x1 + 4x2 + 3x3 + 4x4 + 5x5 + 7x6

s.t. 2x1 + 5x2 − 2x3 − 2x4 + 5x5 + 5x6 = β

x1, x2, x3 ∈ Z+, x4, x5, x6 ∈ R+.

(15)

Suppose we evaluate φ(3.5) by solving the instance with right-hand side 3.5 by
branch-and-bound.
Solving the root LP relaxation, we obtain a solution in which x2 = 0.7 and the
optimal dual multipler for the single constraint is c2/a2 = 4/5 = 0.8.
We therefore branch on variable x2 and obtain two subproblems, whose LP
relaxations have the variable bounds x2 ≤ 0 and x2 ≥ 1, respectively.
Here, the problem is solved after this single branching.
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Example: Dual Function from Branch and Bound

Interpreting the branching in terms of dual functions, we have the following dual
solutions.

t πt πt π̄t

0 0.8 4.4 0.0 4.6 5.6 1.0 3.0 0.0 0.0 0.0 0.0 0.0 0.0
1 1.0 4.0 0.0 5.0 6.0 0.0 2.0 0.0 −1.0 0.0 0.0 0.0 0.0
2 −1.5 9.0 11.5 0.0 1.0 12.5 14.5 0.0 0.0 0.0 0.0 0.0 0.0

Note that we have added the bound constraints explicitly and the upper bounds
on all variables are taken to be a “big-M” value.
Then, the following are the nodal dual functions.

φ0
LP

(β) = 0.8β

φ1
LP

(β) = β

φ2
LP

(β) = −1.5β + 11.5

The initial (global) dual function in the root node is φT0 = φ0
LP

.

After branching, the (global) dual function is φT1 = min{φ1
LP
, φ2

LP
}.
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Example: Strengthening the Dual Function

The dual function can be strengthened by noting that the dual feasible region is
the same for all nodes.
We can therefore approximate the nodal value function by taking a max over all
known dual solutions.
Then we obtain

min{max{0.8β, β,−1.5β},max{0.8β, β,−1.5β + 11.5}} =

min{max{β,−1.5β},max{0.8β,−1.5β + 11.5}}

Further, by evaluating φ at a different right-hand side, but using the same tree as
a starting point, we can begin to approximate the full value function.
On the next slide, we show how evaluating φ(11.5) improves the approximation
around that value of β.
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Example: Iterative Refinement (cont’d)

Node 0
φ0

LP
= 0.8β

Node 2
φ2

LP
= −1.5β + 11.5

Node 1
φ1

LP
= β

x2 = 0 x2 ≥ 1

Node 0
φ0

LP
= 0.8β

Node 2
φ2

LP
= −1.5β + 11.5

Node 4
φ4

LP
= −1.5β + 23

Node 3
φ3

LP
= β − 1

x2 = 1 x2 ≥ 2

Node 1
φ1

LP
= β

x2 = 0 x2 ≥ 1
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Tree Representation of the Value Function

Continuing the process, we eventually generate the entire value function.
Consider the strengthened dual

φ∗(β) = min
t∈T

q>It
yt

It
+ φt

N\It
(β −WIt y

t
It
), (16)

It is the set of indices of fixed variables, yt
It

are the values of the corresponding
variables in node t.
φt

N\It
is the value function of the linear optimization problem at node t, including

only the unfixed variables.
Theorem 3. [Hassanzadeh and Ralphs, 2014] Under the assumption that
{β ∈ Rm | φI(β) <∞} is finite, there exists a branch-and-bound tree with
respect to which φ∗ = φ.
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Example of Value Function Tree

Node 0

Node 8

Node 10

Node 12

Node 14

Node 16

Node 18
β + 30

Node 17
max{β + 25,−2β − 5}

y3 = 5 y3 ≥ 6

Node 15
max{β + 20,−2β − 4}

y3 = 4 y3 ≥ 5

Node 13
max{β + 15,−2β − 3}

y3 = 3 y3 ≥ 4

Node 11
max{β + 10, g9 = −2β − 2}

y3 = 2 y3 ≥ 3

Node 9
max{β + 5, g7 = −2β − 1}

y3 = 1 y3 ≥ 2

Node 1

Node 3

Node 5

Node 7
−2β + 42

Node 6
max{2β + 28, β − 2}

y2 = 2 y2 ≥ 3

Node 4
max{−2β + 14, β − 1}

y2 = 1 y2 ≥ 2

Node 2
max{−2β, β}

y2 = 0 y2 ≥ 1

y3 = 0 y3 ≥ 1
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Correspondence of Nodes and Local Stability Regions
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Dual Functions from the Cutting Plane Method

Recall that there is a version of Gomory’s Cutting Plane Method that yields a
finite algorithm for ILPs.
By tracking the operations undertaken to construct each inequality, we can obtain
a different kind of (strong) dual function.
Just as with branch-and-bound, the full value function can be obtained by taking
the max over a collection of such dual functions.
The operations needed are only the following simple ones.

(i) rational multiplication
(ii) nonnegative combination
(iii) rounding

Chvátal fcns.

(iv) taking the maximum

Gomory fcns.

Note that the first three operations preserve subadditivity.
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Chvátal and Gomory Functions

Let Lm = {f | f : Rm→R, f is linear}.
Chvátal functions are the smallest set of functions C m such that

1 If f ∈ Lm, then f ∈ C m.
2 If f1, f2 ∈ C m and α, β ∈ Q+, then αf1 + βf2 ∈ C m.
3 If f ∈ C m, then df e ∈ C m.

Gomory functions are the smallest set of functions G m ⊆ C m with the additional
property that

1 If f1, f2 ∈ G m, then max{f1, f2} ∈ G m.

It is easy to see that Chvátal functions are subadditive.
Theorem 4. For PILPs (r = n), if φ(0) = 0, then there is a g ∈ G m such that
g(d) = φ(β) for all d ∈ Rm with S(d) 6= ∅.
In fact, there is a one-to-one correspondence between ILP instances and Gomory
functions!
This result can be extended to MILPs by the addition of a correction term.
The resulting form of the value is called the Jeroslow Formula.
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Gomory’s Procedure [Blair and Jeroslow, 1977a]

For an ILP, there is a Chvátal function that is optimal to the subadditive dual.
The procedure:
In iteration k, we solve the following LP

φk−1(β) = min cx
s.t. Ax = β∑n

j=1 f i(aj)xj ≥ f i(β) i = 1, ..., k − 1
x ≥ 0

The kth cut, k > 1, is dependent on the RHS and written as:

f k(β) =

⌈
m∑

i=1

λk−1
i βi +

k−1∑
i=1

λk−1
m+if

i(β)

⌉
where λk−1 = (λk−1

1 , ..., λk−1
m+k−1) ≥ 0
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Gomory’s Procedure (cont.)

Assume that b ∈ ΩIP, φ(b) > −∞ and the algorithm terminates after k + 1
iterations.
If uk is the optimal dual solution to the LP in the final iteration, then

Fk(β) =

m∑
i=1

uk
i βi +

k∑
i=1

uk
m+if

i(β),

is a Chvátal function with Fk(b) = φ(b) and furthermore, it is optimal to the
subadditive dual problem.
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Aside: Cuts from Subadditive Functions

Not only can the cutting plane method be used to construct subadditive dual
functions, subadditive functions can yield cuts!
For any subadditive function ψ, the inequality

n∑
i=1

ψ(ai) ≤ ψ(β),

is valid.
This is not very well-known and there is no clear statement of it with proof in the
literature, it is not difficult to prove.
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Branch and Cut

We have seen it it easy to get a strong dual function from branch-and-bound.
Note, however, that it’s not subadditive in general.
To obtain a subadditive function, we can include the variable bounds explicitly as
constraints, but then the function may not be strong.
For branch-and-cut, we have to take care of the cuts.

Case 1: We know the subadditive representation of each cut.
Case 2: We know the RHS dependency of each cut.
Case 3: Otherwise, we can use some proximity results or the variable bounds.
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Case 1

If we know the subadditive representation of each cut:
At a node t, we solve the LP relaxation of the following problem

φt(b) = min cx
s.t Ax ≥ b

x ≥ lt

−x ≥ −gt

Htx ≥ ht

x ∈ Zr
+ × Rn−r

+

where gt, lt ∈ Rr are the branching bounds applied to the integer variables and
Htx ≥ ht is the set of added cuts in the form∑

j∈I

Ft
k(ak

j )xj +
∑

j∈N\I

F̄t
k(ak

j )xj ≥ Ft
k(σk(b)) k = 1, ..., ν(t),

ν(t): the number of cuts generated so far,
ak

j , j = 1, ..., n: the columns of the problem that the kth cut is constructed from,
σk(b): is the mapping of b to the RHS of the corresponding problem.
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Case 1

Let T be the set of leaf nodes, ut, ut, ut and wt be the dual feasible solution used to
prune t ∈ T . Then,

F(β) = min
t∈T
{utβ + utlt − utgt +

ν(t)∑
k=1

wt
kFt

k(σk(β))}

is an optimal dual function, that is, φ(b) = F(b).
Again, we obtain a subadditive function if the variables are bounded.
However, we may not know the subadditive representation of each cut.
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Other Methods for Constructing Dual Functions

There are a wide range of other methods for constructing dual functions arising
mainly from other solution algorithms.

Explicit construction
The Value Function⇒ discussed today
Generating Functions

Relaxations
Lagrangian Relaxation
Quadratic Lagrangian Relaxation
Corrected Linear Dual Functions

Solution Algorithms
Cutting Plane Method⇒ discussed today
Branch-and-Bound Method⇒ discussed today
Branch-and-Cut Method⇒ discussed today
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Representing/Embedding the Approximations

In practice, we generally want to embed these approximations in other optimization
problems and doing this in a computationally efficient way is difficult.

1 The primal bounding functions we discussed can be represented by points of
strict local convexity.

Embedding the approximation using this representation involves explicitly listing
these points and choosing one (binary variables).
The corresponding continuous part of the function can be generated dynamically or
can also be represented explicitly by dual extreme points.

2 The dual bounding functions must generally be represented explicitly in terms of
their polyhedral pieces.

In this case, the points of strict local convexity are implicit and the selection is of the
relevant piece or pieces.
This yields a much larger representation.
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Warm Starting

Many optimization algorithms can be viewed as iterative procedures for
satisfying optimality conditions (based on duality).
These conditions provide a measure of “distance from optimality.”
Warm starting information is additional input data that allows an algorithm to
quickly get “close to optimality.”
In mixed integer linear optimization, the duality gap is the usual measure.
As in linear programming, a feasible dual function may quickly reduce the gap.

What is a feasible dual function and where do we get one?
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Valid Disjunctions

Consider the implicit optimality conditions associated employed in branch and
bound.
Let P1, . . . ,Ps be a set of polyhedra whose union contains the feasible set which
differ from P only in variable bounds.
Let Bi be the optimal basis for the LP minxi∈Pi c>xi.
Then the following is a valid dual function

L(β) = min{cBi(Bi)−1β + γi | 1 ≤ i ≤ s}

where γi is a constant factor associated with the nonbasic variables fixed at
nonzero bounds.
A similar function yields an upper bound.
If this disjunction is the set of leaf nodes of a branch-and-bound tree, this can be
used to “warm start” the computation.
Alternatively, we can use this disjunction to strengthen the root relaxation in
some way (disjunctive cuts, etc.).
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Sensitivity Analysis

Primal and dual bounding functions can be evaluated with modified problem data
to obtain bounds on the optimal value in the obvious way.
In the case of a branch-and-bound tree, the function

L(β) = min{cBi(Bi)−1β + γi | 1 ≤ i ≤ s}

provides a valid lower bound as a function of the right-hand side.
The corresponding upper bounding function is

U(c) = min{cBi(Bi)−1b + βi | 1 ≤ i ≤ s, x̂i ∈ S}

These functions can be used for local sensitivity analysis, just as one would do in
continuous linear optimization.

For changes in the right-hand side, the lower bound remains valid.
For changes in the objective function, the upper bound remains valid.
One can also make other modifications, such as adding variables or constraints.
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Conclusions

It is possible to generalize the duality concepts that are familiar to us from
continuous linear optimization.
Making any of it practical is difficult but we will see in the next lectures that this
is possible in some cases.
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