Duality for Discrete Optimization: Theory and

Applications

Ted Ralphs'
Joint work with Suresh Bolusani', Scott DeNegre?,
Menal Giizelsoy?, Anahita Hassanzadeh*, Sahar Tahernejad'

!COR@L Lab, Department of Industrial and Systems Engineering, Lehigh University
2SAS Institute, Advanced Analytics, Operations Research R & D 3The Hospital for Special Surgery 4Climate Corp

Joint Mathematics Meeting, Baltimore, MD, 16 January 2019

LEHIGH

UNIVERSIT

COR@L

Ralphs et.al. (COR@L Lab) Duality for Discrete Optimization: Theory and Applications



Outline

@ Introduction

© Value Functions
@ (Continuous) Linear Optimization
@ Discrete Optimization

© Dual Problems
@ Dual Functions
@ Subadditive Dual

@ Conclusions

Ralphs et.al. (COR@L Lz Discrete Optimization: Theory and Appli



Mathematical Optimization

@ The general form of a mathematical optimization problem is:

Form of a General Mathematical Optimization Problem

Zyp = min f(x)
s.t. gilx) < by, 1<i<m (MP)
x € X

where X C R" may be a discrete set.

@ The function f is the objective function, while g; is the constraint function
associated with constraint i.

@ Our primary goal is to compute the optimal value z,p.
@ However, we may want to obtain some auxiliary information as well.

@ More importantly, we may want to develop parametric forms of (MP) in which
the input data are the output of some other function or process.
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What is Duality?

@ Duality is a central concept from which much theory and computational practice
emerges in optimization.

@ Many of the well-known “dualities” that arise in optimization are closely
connected.

o This talk focuses on one particular kind of duality.

Forms of Duality in Optimization

o NP versus co-NP (computational complexity)

e Separation versus optimization (polarity)

o Inverse optimization versus forward optimization
o Weyl-Minkowski duality (representation theorem)
o Conic duality

o Gauge/Lagrangian/Fenchel duality

e Primal/dual functions/problems

4

@ There are a number of other slide decks and papers about duality on my Web
site, including an extended version of this talk.
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Economic Interpretation of Duality

@ The economic viewpoint interprets the variables as representing possible
activities in which one can engage at specific numeric levels.

@ The constraints represent available resources so that g;(x) represents how much
of resource i will be consumed at activity levels x € X.

e With each & € X, we associate a cost f(x) and we say that & is feasible if
gi(x) < b;forall | <i<m.

@ The space in which the vectors of activities live is the primal space.

@ On the other hand, we may also want to consider the problem from the view
point of the resources in order to ask questions such as

o How much are the resources “worth” in the context of the economic system
described by the problem?

e What is the marginal economic profit contributed by each existing activity?

o What new activities would provide additional profit?

@ The dual space is the space of resources in which we can frame these questions.
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(Mixed Integer) Linear Optimization

@ We focus on mixed integer linear optimization problems, although the concepts
we discuss are much more general.

Zp = min c'x, (MILP)

where c € R", S = {x € Z/, x R"" | Ax = b} withA € Q"*", b € R".
@ In this context, we can make the concepts outlined earlier more concrete.

@ We can think of each row of A as representing a resource and each column as
representing an activity or product.

@ For each activity, resource consumption is a linear function of activity level.

@ We first consider the case » = 0, which is the case of the (continuous) linear
optimization problem (LP).
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The LP Value Function

@ Of central importance in duality theory for linear optimization is the value
Junction, defined by

dp(B) = vg}gi(% c'x, (LPVF)

for a given 7 € R”, where S(3) = {x € R" | Ax = (}.
@ Welet o p(f) = 0if s Q={fecR"|S(B) =0}

@ The value function returns the optimal value as a parametric function of the
right-hand side vector, which represents available resources.
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Economic Interpretation of the Value Function

@ What information is encoded in the value function?

o Consider the gradient u = ¢;»(3) at 3 for which ¢, p is continuous.

o The quantity ' Ab represents the marginal change in the optimal value if we
change the resource level by Ab.

o In other words, it can be interpreted as a vector of the marginal costs of the
resources.

o This is also known as the dual solution vector.

@ In the LP case, the gradient is a linear under-estimator of the value function and
can thus be used to derive bounds on the optimal value for any 5 € R™.
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A Small Example

Example 1
¢rp(B) = min 6y + Tys + 5y3
st. 2y =Ty, +y3 =0
V1,Y2,¥3, S R+

Value Function for Example 1

(b}

O

Ralphs et.al. (COR@L Lab) : screte Optimization: Theory and Applications



Outline

@ Introduction

© Value Functions

@ Discrete Optimization

© Dual Problems

@ Conclusions

Discrete Optimization: Theory and App!



The MILP Value Function

@ We now generalize the notions seen so far to the MILP case.

@ The value function associated with the base instance (MILP) is

#(8) = min c¢'x (VE)
x€S(B)

for § € R, where S(f3) = {x € Z/, x R""" | Ax = (}.
@ Again, welet p(8) = o0 if B € Q= {3 e R"|S(B) =0}.
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Another Example

Example 2
¢(8) = min %xl + 2x3 4+ x4
s.tox; — %xz +x3—x4 =0 (D)
X1,X € Ly, x3,x4 € Ry,

Value Function for Example 2

O

oi—
©
[y
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Related Work on Value Function

@ Johnson [1973, 1974, 1979]

o Jeroslow [1979]

o Wolsey [1981]

@ Giizelsoy and Ralphs [2007], Giizelsoy [2009]

Structure and Construction

@ Blair and Jeroslow [1977b, 1979, 1982, 1984, 1985], Blair [1995]
@ Kong et al. [2006]
@ Giizelsoy and Ralphs [2008], Hassanzadeh and Ralphs [2014]

Sensitivity and Warm Starting
@ Ralphs and Giizelsoy [2005, 2006], Giizelsoy [2009]
@ Gamrath et al. [2015]
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Properties of the MILP Value Function

The value function is non-convex, lower semi-continuous, and piecewise polyhedral.
Example 3

. . 3 3
o(f) = min x; — R + 75
St =x; —x2 + 1x3 =8 (Ex2.MILP)
4 2
X1,X € Zy, x3 € Ry
L]
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Example: MILP Value Function (Pure Integer)

Example 4
¢(B) = min 3x; + %xz + 3x3 + 6x4 + Tx5 + 5x6

S.t.6x1 +5x0 —4x3 +2x4 — Txs +x6 = B

X1, X2,X3,X4,X5,X6 € Lt

®  piLP recourse with equality constraint

24 _ _ PILPrecourse with inequality constraint
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Another Example

Example 5
7
¢(B) = min 3x; + 22 + 3x3 + 6x4 + 7x5 + 5x¢
S.t. 6x1 + Sxp — 4x3 + 2x4 — Txs + X6 = “8

X1,X2,X3 € ZJr, X4,X5,Xe € RJr
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Continuous and Integer Restriction of an MILP

Consider the general form of the second-stage value function
¢(8) =minc; x; + clxe
S.t. A[X[ + Acx(‘ = “3, (VF)

N [P n—r;
x €727 x RE

The structure is inherited from that of the continuous restriction:
dc(B) =minclxe
S.t.Acxc = B, (CR)
xc € R
for C = {r, + 1,...,ny} and the similarly defined integer restriction:
¢1(B) = min ¢ x;
st.Ax; =0 (IR)
X € Zi
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Value Function of the Continuous Restriction

Example 6
bc(B) = min 6y, + Tys + 53
s.t.2y1 — Ty, +y3 =3
V1,Y2,¥3 € R+

05)

-1.5 -1 -05 05 1 15
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Points of Strict Local Convexity (Finite Representation)

Example 7
®(b)
1"
10
9
8
7
[
5
4
3
2
-9 -8 -7 -6 -5 -4 -3 -2 - 123456789kj
X =1001] x,=[000] x=1010] x,=[100]
Theorem 1. [Hassanzadeh and Ralphs, 2014] O

o01(B) < oo} is finite, there exists a finite set

Under the assumption that {3 € R™
S C Y such that
P(B) = ;rleig{c-fx, + ¢c(B — Axp)}. 2)
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Dual Bounding Functions

® A dual function F : R™ — R is one that satisfies F(3) < ¢(5) forall 5 € R”.

@ How to select such a function?

@ We choose may choose one that is easy to construct/evaluate or for which
F(b) ~ qb(/?).

@ This results in the following generalized dual associated with the base
instance (MILP).

max {F(b) : F(B) < ¢(B), B e R", F € T"} (D)

where Y C {f | f: R" =R}

@ We call F* strong for this instance if F* is a feasible dual function and
F*(b) = ¢(b).

@ This dual instance always has a solution F* that is strong if the value function is
bounded and Y = {f | f : R"—R}. Why?
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Example: LP Relaxation Dual Function

Example 8
Frp(d) = min vd,
st 0>v> f%, and 3)
v € R,
O
which can be written explicitly as
) 0, <0
Frp(B) = { féﬁ, B>0
z(8)
Frp(B)
3|
2|
1
4 _% -3 _3 2 _% 1 _é 0 i 1 % 2 5 3 ; 4 B
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The Subadditive Dual

By considering that

F(B)<op(B)VBER" <= F(B)<c'x,xecS(B)VBeR"
< F(Ax)<c'x,xeZ",

the generalized dual problem can be rewritten as
max {F(f) : F(Ax) < cx, x € ZI, xR, F e T"}.

Can we further restrict 7" and still guarantee a strong dual solution?
@ The class of linear functions? NO!
@ The class of convex functions? NO!
@ The class of Subadditive functions? YES!

See [Johnson, 1973, 1974, 1979, Jeroslow, 1979] for details.
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The Subadditive Dual

@ Let a function F be defined over a domain V. Then F is subadditive if
F(vi) + F(v2) > F(vi +v2)Vvi,vo, vy + v € V.
@ Note that the value function z is subadditive over 2. Why?
o If Y =T" = {Fis subadditive | F : R"—=R, F(0) = 0}, we can rewrite the
dual problem above as the subadditive dual
max F(b)
Fld)<¢ j=1,..,r,
F(@)<¢ j=r+1,..,n, and
Fel™,

where the function F is defined by

F(B) = limsup

6—0t

F (g‘d) V5 € R™.

@ Here, F is the upper 3-directional derivative of F at zero.
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Strong Duality

Strong Duality Theorem

If the primal problem (resp., the dual) has a finite optimum, then so does the
subadditive dual problem (resp., the primal) and they are equal.

Outline of the Proof. Show that the value function ¢ or an extension of ¢ is a
feasible dual function.

@ Note that ¢ satisfies the dual constraints.
e O=R"gpel™
e O CR™ J¢, € I"with ¢.(8) = d(8) V5 € Qand z.(f) < o0 VB € R™.
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Example: Subadditive Dual

For the instance in Example 2, the subadditive dual

max F(b
F(

(A VA VAR VAN
—_ N Oni—

and we have the following feasible dual functions:
Q Fi(p) = i is an optimal dual function for 5 € {0, 1,2, ...}.
Q@ F(B) = 0 is an optimal function for 3 € {...,—3,—2,0}.

@ F3(B) = max{1[B — Hﬂ;ﬂ] ,2d — 3[B — [ ﬂ ]} is an optimal function
forb e {[0, ] U[L,3]U[2,3]U...}.

28 p 287_28
@ Fi(f) = max{3[%L - UEI-F1 Wa‘sa,fg(%fiz”s; 114 Zyisan
—3]

]
3
optimal function for b € {... U [—

N\\]
L»)
(-

\
[\S)
\

W
C
\

D=

=)

—
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Example: Feasible Dual Functions

Example 9
Wd) ———
F(d) -=---
3
5
2
) RN
3 -
2
; RN
1 oo
e - - 2
- - -
- - d
=5 3 5 2 5 4 4 0 5 1 g3 2 g 3 7 4
w
O

@ Notice how different dual solutions are optimal for some right-hand sides and
not for others.
@ Only the value function is optimal for all right-hand sides.
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Optimality Conditions

@ One reason the dual problem is important is because it gives us a set of
optimality conditions.

Optimality conditions for (MILP)

If x* € S, F* is feasible for (D), and ¢ ' x* = F*(b), then x* is an optimal
solution to (MILP) and F* is an optimal solution to (D).

@ These are the optimality conditions achieved in the branch-and-cut algorithm for
MILP that prove the optimality of the primal solution.

@ The branch-and-bound tree encodes a solution to the dual.
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Dual Functions from Branch and Bound

@ Recall that a dual function F : R™ — R is one that satisfies F(3) < ¢(/3) for all
g eR™

@ Observe that any branch-and-bound tree yields a lower approximation of the
value function.
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Dual Functions from Branch-and-Bound [Wolsey, 1981]

Let T be set of the terminating nodes of the tree. Then in a terminating node 1 € 7" we
solve:

#'(8) =minc'x

s.t. Ax = [3, “4)
F'<x<u,x>0
The dual at node 7:
¢'(B) = max {7’ + 7'l' + 7'u'}
st.TA+7 +7 <cl %)

7>0,7<0
We obtain the following strong dual function:

min{#'8 + &'l' + 7'u'},

teT (6)

where (7, 7', 7) is an optimal solution to the dual (5).
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Iterative Refinement

@ The tree obtained from evaluating ¢(/3) yields a dual function strong at /3.

@ By solving for other right-hand sides, we obtain additional dual functions that
can be aggregated.

@ These additional solves can be done within the same tree, eventually yielding a
single tree representing the entire function.

Punsf)

Node 0 Node 0

Node 1
10 Node 3

. Node 4

Node 1 Node 2 Node 1 Node 2

xn =1 X >2

Node 3 Node 4
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Tree Representation of the Value Function

o Continuing the process, we eventually generate the entire value function.

@ Consider the strengthened dual

L (Y — i Tt ot B — i
¢"(8) = mingy, yj, + dh;, (8 — Wiy, @)

@ /, is the set of indices of fixed variables, y; are the values of the corresponding
variables in node .

° (;)/’V\ ;, 18 the value function of the linear optimization problem at node 7, including
only the unfixed variables.

Theorem 2. [Hassanzadeh and Ralphs, 2014] Under the assumption that
{B e R™ | ¢;(B) < oc} is finite, there exists a branch-and-bound tree with
respect to which ¢" = ¢.
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Example of Value Function Tree

Node 0

Node 1 Node 8

Node 2 Node 3 Node 9

Node 10

max{~28, 5} max{8+5,g = -28 -1}

Node 11

Node 5 max{§ + 10, g = 2§ — 2]

Node 4
max{~26 + 14,6 - 1} ) Node 12

Node 6 Node 7 Node 13
max{2§ + 28,6 -2} ~26+42 max({§ + 15,25 - 3}

Node 14

Node 16

d
max{§ +20,-25 4}

Node 17 Node I8
max{§+25,-25 -5} f+30

and Applications



Correspondence of Nodes and Local Stability Regions

PyplB)

-10 -6 -4

Node 17| Node 15, Node 13| Node 11 | Node 9 Node 2 Node 4

i
|
|
|
1
|
|
|
|
|
1
|
|
|
|
|
|
1
|
|
|
|
| Node 6

1
|
|
! ]
| |
| |
| |
0 21 2 4
| |
| |
| |
| I
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Conclusions

@ Duality has a wide range of practical uses.
e Sensitivity analysis

Warm starting

Parametric optimization

Multi-level/stochastic optimization

Benders decomposition

Parametric inequalities

@ It is possible to generalize the duality concepts that are familiar to us from
continuous linear optimization.

@ Making practical use of it is difficult but this is possible in some cases.
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