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Mathematical Optimization

The general form of a mathematical optimization problem is:

Form of a General Mathematical Optimization Problem

zMP = min f (x)

s.t. gi(x) ≤ bi, 1 ≤ i ≤ m (MP)
x ∈ X

where X ⊆ Rn may be a discrete set.
The function f is the objective function, while gi is the constraint function
associated with constraint i.
Our primary goal is to compute the optimal value zMP.
However, we may want to obtain some auxiliary information as well.
More importantly, we may want to develop parametric forms of (MP) in which
the input data are the output of some other function or process.
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What is Duality?

Duality is a central concept from which much theory and computational practice
emerges in optimization.
Many of the well-known “dualities” that arise in optimization are closely
connected.
This talk focuses on one particular kind of duality.

Forms of Duality in Optimization

NP versus co-NP (computational complexity)

Separation versus optimization (polarity)

Inverse optimization versus forward optimization

Weyl-Minkowski duality (representation theorem)

Conic duality

Gauge/Lagrangian/Fenchel duality

Primal/dual functions/problems

There are a number of other slide decks and papers about duality on my Web
site, including an extended version of this talk.
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Economic Interpretation of Duality

The economic viewpoint interprets the variables as representing possible
activities in which one can engage at specific numeric levels.
The constraints represent available resources so that gi(x̂) represents how much
of resource i will be consumed at activity levels x̂ ∈ X.
With each x̂ ∈ X, we associate a cost f (x̂) and we say that x̂ is feasible if
gi(x̂) ≤ bi for all 1 ≤ i ≤ m.
The space in which the vectors of activities live is the primal space.
On the other hand, we may also want to consider the problem from the view
point of the resources in order to ask questions such as

How much are the resources “worth” in the context of the economic system
described by the problem?

What is the marginal economic profit contributed by each existing activity?

What new activities would provide additional profit?

The dual space is the space of resources in which we can frame these questions.
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(Mixed Integer) Linear Optimization

We focus on mixed integer linear optimization problems, although the concepts
we discuss are much more general.

zIP = min
x∈S

c>x, (MILP)

where c ∈ Rn, S = {x ∈ Zr
+ × Rn−r

+ | Ax = b} with A ∈ Qm×n, b ∈ Rm.

In this context, we can make the concepts outlined earlier more concrete.

We can think of each row of A as representing a resource and each column as
representing an activity or product.

For each activity, resource consumption is a linear function of activity level.

We first consider the case r = 0, which is the case of the (continuous) linear
optimization problem (LP).
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The LP Value Function

Of central importance in duality theory for linear optimization is the value
function, defined by

φLP(β) = min
x∈S(β)

c>x, (LPVF)

for a given β ∈ Rm, where S(β) = {x ∈ Rn
+ | Ax = β}.

We let φLP(β) =∞ if β ∈ Ω = {β ∈ Rm | S(β) = ∅}.
The value function returns the optimal value as a parametric function of the
right-hand side vector, which represents available resources.
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Economic Interpretation of the Value Function

What information is encoded in the value function?

Consider the gradient u = φ′
LP(β) at β for which φLP is continuous.

The quantity u>∆b represents the marginal change in the optimal value if we
change the resource level by ∆b.

In other words, it can be interpreted as a vector of the marginal costs of the
resources.

This is also known as the dual solution vector.

In the LP case, the gradient is a linear under-estimator of the value function and
can thus be used to derive bounds on the optimal value for any β ∈ Rm.
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A Small Example

Example 1
φLP(β) = min 6y1 + 7y2 + 5y3

s.t. 2y1 − 7y2 + y3 = β

y1, y2, y3,∈ R+

Value Function for Example 1
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The MILP Value Function

We now generalize the notions seen so far to the MILP case.
The value function associated with the base instance (MILP) is

MILP Value Function

φ(β) = min
x∈S(β)

c>x (VF)

for β ∈ Rm, where S(β) = {x ∈ Zr
+ × Rn−r

+ | Ax = β}.
Again, we let φ(β) =∞ if β ∈ Ω = {β ∈ Rm | S(β) = ∅}.
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Another Example

Example 2
φ(β) = min 1

2 x1 + 2x3 + x4

s.t x1 − 3
2 x2 + x3 − x4 = β

x1, x2 ∈ Z+, x3, x4 ∈ R+.
(1)

Value Function for Example 2
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Related Work on Value Function

Duality

Johnson [1973, 1974, 1979]
Jeroslow [1979]
Wolsey [1981]
Güzelsoy and Ralphs [2007], Güzelsoy [2009]

Structure and Construction
Blair and Jeroslow [1977b, 1979, 1982, 1984, 1985], Blair [1995]
Kong et al. [2006]
Güzelsoy and Ralphs [2008], Hassanzadeh and Ralphs [2014]

Sensitivity and Warm Starting

Ralphs and Güzelsoy [2005, 2006], Güzelsoy [2009]
Gamrath et al. [2015]
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Properties of the MILP Value Function

The value function is non-convex, lower semi-continuous, and piecewise polyhedral.
Example 3

φ(β) = min x1 −
3
4

x2 +
3
4

x3

s.t.
5
4

x1 − x2 +
1
2

x3 = β

x1, x2 ∈ Z+, x3 ∈ R+

(Ex2.MILP)
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Example: MILP Value Function (Pure Integer)

Example 4
φ(β) = min 3x1 +

7
2

x2 + 3x3 + 6x4 + 7x5 + 5x6

s.t. 6x1 + 5x2 − 4x3 + 2x4 − 7x5 + x6 = β

x1, x2, x3, x4, x5, x6 ∈ Z+
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Another Example

Example 5

φ(β) = min 3x1 +
7
2

x2 + 3x3 + 6x4 + 7x5 + 5x6

s.t. 6x1 + 5x2 − 4x3 + 2x4 − 7x5 + x6 = β

x1, x2, x3 ∈ Z+, x4, x5, x6 ∈ R+

The structure of this function is inherited from two related functions.
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Continuous and Integer Restriction of an MILP

Consider the general form of the second-stage value function

φ(β) = min c>I xI + c>C xC

s.t. AIxI + ACxC = β,

x ∈ Zr2
+ × Rn2−r2

+

(VF)

The structure is inherited from that of the continuous restriction:

φC(β) = min c>C xC

s.t. ACxC = β,

xC ∈ Rn2−r2
+

(CR)

for C = {r2 + 1, . . . , n2} and the similarly defined integer restriction:

φI(β) = min c>I xI

s.t. AIxI = β

xI ∈ Zr2
+

(IR)

for I = {1, . . . , r2}.
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Value Function of the Continuous Restriction

Example 6
φC(β) = min 6y1 + 7y2 + 5y3

s.t. 2y1 − 7y2 + y3 = β

y1, y2, y3 ∈ R+
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Points of Strict Local Convexity (Finite Representation)
Example 7

Theorem 1. [Hassanzadeh and Ralphs, 2014]
Under the assumption that {β ∈ Rm2 | φI(β) <∞} is finite, there exists a finite set
S ⊆ Y such that

φ(β) = min
xI∈S
{c>I xI + φC(β − AIxI)}. (2)
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Dual Bounding Functions

A dual function F : Rm → R is one that satisfies F(β) ≤ φ(β) for all β ∈ Rm.
How to select such a function?
We choose may choose one that is easy to construct/evaluate or for which
F(b) ≈ φ(b).
This results in the following generalized dual associated with the base
instance (MILP).

max {F(b) : F(β) ≤ φ(β), β ∈ Rm,F ∈ Υm} (D)

where Υm ⊆ {f | f : Rm→R}
We call F∗ strong for this instance if F∗ is a feasible dual function and
F∗(b) = φ(b).
This dual instance always has a solution F∗ that is strong if the value function is
bounded and Υm ≡ {f | f : Rm→R}. Why?
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Example: LP Relaxation Dual Function
Example 8

FLP(d) = min vd,
s.t 0 ≥ v ≥ − 1

2 , and
v ∈ R,

(3)

which can be written explicitly as

FLP(β) =

{
0, β ≤ 0

− 1
2β, β > 0

.

FLP(β)
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β
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The Subadditive Dual

By considering that

F(β) ≤ φ(β) ∀β ∈ Rm ⇐⇒ F(β) ≤ c>x , x ∈ S(β) ∀β ∈ Rm

⇐⇒ F(Ax) ≤ c>x , x ∈ Zn
+,

the generalized dual problem can be rewritten as

max {F(β) : F(Ax) ≤ cx, x ∈ Zr
+ × Rn−r

+ , F ∈ Υm}.

Can we further restrict Υm and still guarantee a strong dual solution?
The class of linear functions? NO!
The class of convex functions? NO!
The class of Subadditive functions? YES!

See [Johnson, 1973, 1974, 1979, Jeroslow, 1979] for details.
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The Subadditive Dual

Let a function F be defined over a domain V . Then F is subadditive if
F(v1) + F(v2) ≥ F(v1 + v2)∀v1, v2, v1 + v2 ∈ V .
Note that the value function z is subadditive over Ω. Why?
If Υm ≡ Γm ≡ {F is subadditive | F : Rm→R,F(0) = 0}, we can rewrite the
dual problem above as the subadditive dual

max F(b)

F(aj) ≤ cj j = 1, ..., r,
F̄(aj) ≤ cj j = r + 1, ..., n, and
F ∈ Γm,

where the function F̄ is defined by

F̄(β) = lim sup
δ→0+

F(δβ)

δ
∀β ∈ Rm.

Here, F̄ is the upper β-directional derivative of F at zero.
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Strong Duality

Strong Duality Theorem

If the primal problem (resp., the dual) has a finite optimum, then so does the
subadditive dual problem (resp., the primal) and they are equal.

Outline of the Proof. Show that the value function φ or an extension of φ is a
feasible dual function.

Note that φ satisfies the dual constraints.
Ω ≡ Rm: φ ∈ Γm.
Ω ⊂ Rm: ∃ φe ∈ Γm with φe(β) = φ(β) ∀β ∈ Ω and ze(β) <∞ ∀β ∈ Rm.
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Example: Subadditive Dual

For the instance in Example 2, the subadditive dual

max F(b)
F(1) ≤ 1

2
F(− 3

2 ) ≤ 0
F̄(1) ≤ 2

F̄(−1) ≤ 1
F ∈ Γ1.

.

and we have the following feasible dual functions:
1 F1(β) = β

2 is an optimal dual function for β ∈ {0, 1, 2, ...}.
2 F2(β) = 0 is an optimal function for β ∈ {...,−3,− 3

2 , 0}.
3 F3(β) = max{ 1

2dβ −
ddβe−βe

4 e, 2d − 3
2dβ −

ddβe−βe
4 e} is an optimal function

for b ∈ {[0, 1
4 ] ∪ [1, 5

4 ] ∪ [2, 9
4 ] ∪ ...}.

4 F4(β) = max{ 3
2d

2β
3 −

2dd 2β
3 e−

2β
3 e

3 e − β,− 3
4d

2β
3 −

2dd 2β
3 e−

2β
3 e

3 e+ β
2 } is an

optimal function for b ∈ {... ∪ [− 7
2 ,−3] ∪ [−2,− 3

2 ] ∪ [− 1
2 , 0]}
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Example: Feasible Dual Functions

Example 9
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Notice how different dual solutions are optimal for some right-hand sides and
not for others.
Only the value function is optimal for all right-hand sides.
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Optimality Conditions

One reason the dual problem is important is because it gives us a set of
optimality conditions.

Optimality conditions for (MILP)

If x∗ ∈ S, F∗ is feasible for (D), and c>x∗ = F∗(b), then x∗ is an optimal
solution to (MILP) and F∗ is an optimal solution to (D).

These are the optimality conditions achieved in the branch-and-cut algorithm for
MILP that prove the optimality of the primal solution.
The branch-and-bound tree encodes a solution to the dual.
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Dual Functions from Branch and Bound

Recall that a dual function F : Rm → R is one that satisfies F(β) ≤ φ(β) for all
β ∈ Rm.
Observe that any branch-and-bound tree yields a lower approximation of the
value function.

Ralphs et.al. (COR@L Lab) Duality for Discrete Optimization: Theory and Applications



Dual Functions from Branch-and-Bound [Wolsey, 1981]

Let T be set of the terminating nodes of the tree. Then in a terminating node t ∈ T we
solve:

φt(β) = min c>x

s.t. Ax = β,

lt ≤ x ≤ ut, x ≥ 0

(4)

The dual at node t:

φt(β) = max {πtβ + πtlt + π̄tut}
s.t. πtA + πt + π̄t ≤ c>

π ≥ 0, π̄ ≤ 0

(5)

We obtain the following strong dual function:

min
t∈T
{π̂tβ + π̂tlt + ˆ̄πtut}, (6)

where (π̂t, π̂t, ˆ̄πt) is an optimal solution to the dual (5).
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Iterative Refinement

The tree obtained from evaluating φ(β) yields a dual function strong at β.
By solving for other right-hand sides, we obtain additional dual functions that
can be aggregated.
These additional solves can be done within the same tree, eventually yielding a
single tree representing the entire function.

Node 0

Node 2Node 1

x2 = 0 x2 ≥ 1

Node 0

Node 2

Node 4Node 3

x2 = 1 x2 ≥ 2

Node 1

x2 = 0 x2 ≥ 1
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Tree Representation of the Value Function

Continuing the process, we eventually generate the entire value function.
Consider the strengthened dual

φ∗(β) = min
t∈T

q>It
yt

It
+ φt

N\It
(β −WIt y

t
It
), (7)

It is the set of indices of fixed variables, yt
It

are the values of the corresponding
variables in node t.
φt

N\It
is the value function of the linear optimization problem at node t, including

only the unfixed variables.
Theorem 2. [Hassanzadeh and Ralphs, 2014] Under the assumption that
{β ∈ Rm2 | φI(β) <∞} is finite, there exists a branch-and-bound tree with
respect to which φ∗ = φ.

Ralphs et.al. (COR@L Lab) Duality for Discrete Optimization: Theory and Applications



Example of Value Function Tree

Node 0

Node 8

Node 10

Node 12

Node 14

Node 16

Node 18
β + 30

Node 17
max{β + 25,−2β − 5}

y3 = 5 y3 ≥ 6

Node 15
max{β + 20,−2β − 4}

y3 = 4 y3 ≥ 5

Node 13
max{β + 15,−2β − 3}

y3 = 3 y3 ≥ 4

Node 11
max{β + 10, g9 = −2β − 2}

y3 = 2 y3 ≥ 3

Node 9
max{β + 5, g7 = −2β − 1}

y3 = 1 y3 ≥ 2

Node 1

Node 3

Node 5

Node 7
−2β + 42

Node 6
max{2β + 28, β − 2}

y2 = 2 y2 ≥ 3

Node 4
max{−2β + 14, β − 1}

y2 = 1 y2 ≥ 2

Node 2
max{−2β, β}

y2 = 0 y2 ≥ 1

y3 = 0 y3 ≥ 1
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Correspondence of Nodes and Local Stability Regions
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Conclusions

Duality has a wide range of practical uses.
Sensitivity analysis
Warm starting
Parametric optimization
Multi-level/stochastic optimization
Benders decomposition
Parametric inequalities
...

It is possible to generalize the duality concepts that are familiar to us from
continuous linear optimization.
Making practical use of it is difficult but this is possible in some cases.
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