Experiments On General Disjunctions

Some Dumb Ideas We Tried That Didn’t Work* and Others We Haven’t Tried Yet

*But that may provide some insight

Ted Ralphs, Serdar Yildiz

COR@L Lab, Department of Industrial and Systems Engineering, Lehigh University

INFORMS, October 15 2012
1 Introduction

2 Disjunction Selection Criteria
 - Bound Improvement
 - Violation
 - Volume

3 Methods for Approximating Volume
 - Maximum inscribed ellipsoid
 - Minimum outscribed hyper-rectangle
 - Maximum distance in cut off polyhedron
 - Maximum width direction
 - Maximum distance to LP optimum solution

4 Conclusion

(COR@L Lab, Lehigh University)
Experiments On General Disjunctions
INFORMS, October 15 2012
Quick Review

Mixed Integer Linear Program (MILP)

\[z_{IP} = \min cx \]
\[s.t. \ Ax \geq b \quad \text{(MILP)} \]
\[x \in \mathbb{Z}^d \times \mathbb{R}^{n-d}, \]

where \(A \in \mathbb{Q}^{m \times n}, b \in \mathbb{Q}^m, c \in \mathbb{Q}^n, m, n, d \in \mathbb{N} \) are given.

Linear Programming (LP) Relaxation

\[z_{LP} = \min cx \]
\[s.t. \ Ax \geq b \quad \text{(LP)} \]
\[x \in \mathbb{R}^n, \]

where \(A \in \mathbb{Q}^{m \times n}, b \in \mathbb{Q}^m, c \in \mathbb{Q}^n, m, n \in \mathbb{N} \) are given.

1. \(z_{LP} \leq z_{IP} \) provides a lower bound (\(z_l \)) on \(z_{IP} \).
2. Any \(\hat{x} \in \mathbb{Z}^d \times \mathbb{R}^{n-d} \) s.t. \(A\hat{x} \geq b \) provides an upper bound (\(z_u \)) on \(z_{IP} \).
3. “Tighten” the feasible region of the (LP) relaxation iteratively.
4. Repeat until \(z_l = z_u \).
A binary disjunction is defined by \((\pi, \pi_0, \pi_1)\) for \(\pi \in \mathbb{R}^n, \pi_0, \pi_1 \in \mathbb{R}\).

Such a disjunction is said to be valid if

\[\pi x \leq \pi_0 \lor \pi x \geq \pi_1 \quad \forall x \in P_I, \]

(1)

If \(\pi \in \mathbb{Z}^n, \pi_0 \in \mathbb{Z}, \pi_1 = \pi_0 + 1, \pi_i = 0, i > d\), then \((\pi, \pi_0, \pi_1)\) is valid for (MILP) and is called a general dijunction.

Disjunctive subsets associated with \((\pi, \pi_0, \pi_1)\) are

\[P_0 = \{x \in \mathbb{R}^n \mid Ax \geq b, \pi x \leq \pi_0\} \]

(2)

\[P_1 = \{x \in \mathbb{R}^n \mid Ax \geq b, \pi x \geq \pi_1\} \]

(3)

A valid inequality is a valid disjunction for which \(P_1 = \emptyset\).

A special class that will be of interest is the variable disjunctions for which \(\pi\) is a unit vector.
Two Algorithms

Branch and Bound Algorithm

Cutting Plane Algorithm
Selecting a Disjunction

- Our goal is to iteratively obtain upper and lower bounds that are equal.
- It would seem natural that we want relaxations that yield good lower bounds.
- Thus, it would seem that disjunction selection should be driven by bound improvement.
- Suppose, however, that we have an optimal solution x^*.
- The goal is then to prove that $\mathcal{P}_I \cap \{ x \in \mathbb{R}^n \mid cx < cx^* \} = \emptyset$.
- What does the bound have to do with it?
Exploiting a Disjunction: Branching

Branching on \((\pi, \pi_0, \pi_1)\) creates two \textit{subproblems} with feasible regions.

\[
\mathcal{P}_0 = \min \{ x \in \mathbb{R}^n, Ax \geq b, \pi x \leq \pi_0 \},
\]

\[
\mathcal{P}_1 = \min \{ x \in \mathbb{R}^n, Ax \geq b, \pi x \geq \pi_1 \}
\]

Solving the LP relaxations of each yields

\[
z_0 = \min \{ cx \mid x \in \mathbb{R}^n, Ax \geq b, \pi x \leq \pi_0 \},
\]

\[
z_1 = \min \{ cx \mid x \in \mathbb{R}^n, Ax \geq b, \pi x \geq \pi_1 \}
\]

and we obtain the lower bound

\[
z_B = \min(z_0, z_1)
\]
A disjunctive cut associated with \((\pi, \pi_0, \pi_1)\) is an inequality \((\alpha, \beta)\) valid for \(\mathcal{P}_0 \cup \mathcal{P}_1\).

Note that a disjunctive cut is an inequality valid for (MILP).

If we solve the augmented LP relaxation

\[
z_C = \min \{cx \mid x \in \mathbb{R}^n, Ax \geq b, \alpha x \leq \beta\}, \tag{9}\]

how does the bound compare?

We have \(z_c \leq z_B\) with equality if \(\alpha = c\) and \(\beta = z_B\).
In selecting branching disjunctions, we usually consider bound improvement as our primary measure.

In general, there are an infinite number of disjunctions that achieve the same bound.

What is the difference between these disjunctions?
Measuring Effectiveness: Cutting

- In selecting disjunctions for cutting, we usually consider a measure based on *volume*.
- This is seen as a proxy for bound improvement, but might it be the other way around?

![Diagram showing a disjunction and objective function](image)
Branching Versus Cutting

What is the tradeoff of branching versus cutting?

1. Cutting does not create any additional subproblems.
2. Cutting degrades numerics.
3. The bound from cutting can be weaker.

Nannicini et al (2011)
Outline

1. Introduction

2. Disjunction Selection Criteria
 - Bound Improvement
 - Violation
 - Volume

3. Methods for Approximating Volume
 - Maximum inscribed ellipsoid
 - Minimum outscribed hyper-rectangle
 - Maximum distance in cut off polyhedron
 - Maximum width direction
 - Maximum distance to LP optimum solution

4. Conclusion
Previous Literature On Selection Criteria

- Cutting
 - Balas and Saxena (2007) for split inequalities,
 - Fischetti and Lodi (2005) for C-G inequalities,
 - Balas et al. (1996a) for lift-and-project inequalities,
 - Gu et al. (1998) for lifted-cover inequalities.
 - Mahajan (2009) (maximum bound improvement)

- Branching
 - Bound improvement
 - Cornuéjols et al. (2008).
See (Mahajan and R., 2009a, 2009b) for details.
Formulated a MIP to determine if the bound can be improved by K.
Solved a sequence of MIPs with varying K.
Add additional constraints (like # non-zeros in disjunction $\leq k$).

Performance Profile of number of nodes in branch-and-bound tree.
Cuts that remove more “volume” result in a “tighter” formulation.

Rather than directly measuring volume, we often measure a cut’s degree of violation.

Violation is also a proxy for bound improvement.

Can we use degree of violation to select general disjunctions?

Spoiler: yes, but you shouldn’t!
Selecting Disjunctions by Violation

- We considered two different violation measures for a set of MIPLIB 3.0 problems.
 - $\min(\hat{\pi}\hat{x} - \hat{\pi}_0, \hat{\pi}_0 + 1 - \hat{\pi}\hat{x})$
 - $\max(\hat{\pi}x - \hat{\pi}_0, \hat{\pi}_0 + 1 - \hat{\pi}x)$

- We compare our results with strong branching and the method of Karamanov and Cornuéjols (2011).
Our experiments are compared with the method of Karamanov and Cornuéjols (2011).

A split disjunction that generates a deep cut may also be useful for branching.

Procedure

- Obtain MIG cuts from LP opt. tableau.
- For each MIG, obtain split disjunctions that MIG can be generated from.
- For each split disjunction, calculate the coefficients of intersection cut.
- Calculate the depth of the intersection cut.
- Select disjunctions corresponding to the deepest k intersection cuts.
Relative gap closed at root node

Figure: Relative gap closed at root node
Relative gap closed After 2000 nodes

Figure: Rel gap closed with 2000 node limit

(COR@L Lab, Lehigh University) Experiments On General Disjunctions INFORMS, October 15 2012 19 / 31
Efficient general disjunction

Figure: Efficient general disjunction

- $x_1 \leq 6$, $x_1 \geq 7$, variable disjunction
- $x_1 + x_2 \leq 6$, $x_1 + x_2 \geq 7$, general disjunction.
Our experience with maximum violating disjunction motivated us to experiment with maximumizing cut off volume.

Cut off polyhedron is the polyhedron cut off by disjunction which is

\[
\{ x \in \mathbb{R}^n | Ax \leq b, \hat{\pi}x \geq \hat{\pi}_0, \hat{\pi}x \leq \hat{\pi}_0 + 1 \}
\]

Calculating volume of polyhedra is \#P-hard!

There is no open source or commercial code to calculate volume of polyhedron except special polyhedra such as

- hyper-rectangle
- hyper-cube etc.

How to approximate the volume?
Cut off polyhedron

Figure: Cut off polyhedron
Outline

1. Introduction

2. Disjunction Selection Criteria
 - Bound Improvement
 - Violation
 - Volume

3. Methods for Approximating Volume
 - Maximum inscribed ellipsoid
 - Minimum outscribed hyper-rectangle
 - Maximum distance in cut off polyhedron
 - Maximum width direction
 - Maximum distance to LP optimum solution

4. Conclusion
Maximum inscribed ellipsoid

Figure: Ellipsoid

- Lower bound for the volume of cut off polyhedron.
Figure: Minimum outscribed hyper-rectangle
Maximum distance in cut off polyhedron

Figure: Maximum distance in cut off polyhedron
Figure: Maximum width direction
Figure: Maximum distance to LP optimum solution
1 Introduction

2 Disjunction Selection Criteria
 - Bound Improvement
 - Violation
 - Volume

3 Methods for Approximating Volume
 - Maximum inscribed ellipsoid
 - Minimum outscribed hyper-rectangle
 - Maximum distance in cut off polyhedron
 - Maximum width direction
 - Maximum distance to LP optimum solution

4 Conclusion
Conclusion

- Bound improvement efficient but expensive.
- There are cases bound improvement may fail.
- Violation does not work well in practice.
- Next criteria to be considered is cut-off polyhedron volume.

Questions?