Integer Linear Program: Minimize/Maximize a linear objective function over a (discrete) set of solutions satisfying specified linear constraints.

\[z_{\text{IP}} = \min_{x \in \mathbb{Z}^n} \{ c^T x \mid Ax \geq b \} \]
What is Decomposition?

- Many complex models are built up from simpler structures.
 - Subsystems linked by system-wide constraints or variables.
 - Complex combinatorial structures obtained by combining simpler ones.
- Decomposition is the process of breaking a model into smaller parts.
- The goal is either to
 - reformulate the model for easier solution;
 - reformulate the model to obtain an improved relaxation (bound); or
 - separate the model into stages or levels (possibly with separate objectives).
“Classical” decomposition arises from *block structure* in the constraints.

By relaxing/fixing the linking variables/constraints, we get a separable model.

A separable model consists of smaller submodels that are easier to solve.

The separability lends itself nicely to *parallel implementation*.

\[
\begin{pmatrix}
A_{01} & A_{02} & \cdots & A_{0\kappa} \\
A_1 & & & \\
& A_2 & & \\
& & \ddots & \\
& & & A_{\kappa\kappa}
\end{pmatrix}
\begin{pmatrix}
A_{10} & A_{11} \\
A_2 & A_{22} \\
& \ddots & \ddots \\
A_{\gamma 0} & & A_{\kappa\kappa}
\end{pmatrix}
\]

\[
\begin{pmatrix}
A_{00} & A_{01} & A_{02} & \cdots & A_{0\kappa} \\
A_{10} & A_{11} & & & \\
A_2 & A_{22} & & & \\
& \ddots & \ddots & & \\
A_{\gamma 0} & & & & A_{\kappa\kappa}
\end{pmatrix}
\]
The Decomposition Principle (in MIP)

- Decomposition methods leverage our ability to solve either a relaxation or a restriction.
- Methodology is based on the ability to solve a given subproblem repeatedly with varying inputs.
- The goal of solving the subproblem repeatedly is to obtain information about its structure that can be incorporated into a master problem.

Constraint decomposition
- Relax a set of linking constraints to expose structure.
- Leverages ability to solve either the optimization or separation problem for a relaxation (with varying objectives and/or points to be separated).

Variable decomposition
- Fix the values of linking variables to expose the structure.
- Leverages ability to solve a restriction (with varying right-hand sides).
Example: Facility Location Problem

- We have n locations and m customers to be served from those locations.
- There is a fixed cost c_j and a capacity W_j associated with facility j.
- There is a cost d_{ij} and demand w_{ij} for serving customer i from facility j.
- We have two sets of binary variables.
 - y_j is 1 if facility j is opened, 0 otherwise.
 - x_{ij} is 1 if customer i is served by facility j, 0 otherwise.

Capacitated Facility Location Problem

$$\min \sum_{j=1}^{n} c_j y_j + \sum_{i=1}^{m} \sum_{j=1}^{n} d_{ij} x_{ij}$$

s.t.
$$\sum_{j=1}^{n} x_{ij} = 1 \quad \forall i$$

$$\sum_{i=1}^{m} w_{ij} x_{ij} \leq W_j y_j \quad \forall j$$

$$x_{ij}, y_j \in \{0, 1\} \quad \forall i, j$$
DIP (w/ M. Galati and J. Wang)

DIP is a software framework and stand-alone solver for implementation and use of a variety of decomposition-based algorithms.

- Decomposition-based algorithms have traditionally been difficult to implement and compare.
- **DIP** abstracts the common, generic elements of these methods.
 - **Key:** API is in terms of the compact formulation.
 - The framework takes care of reformulation and implementation.
 - DIP is now a **fully generic** decomposition-based parallel MILP solver.

DipPy (w/ M. O’Sullivan)

- Python-based modeling language.
- User can express decompositions in a “natural” way.
- Allows access to multiple decomposition methods.

⇐ *Joke!*
CHiPPS is the COIN-OR High Performance Parallel Search.

CHiPPS is a set of C++ class libraries for implementing tree search algorithms for both sequential and parallel environments.

CHiPPS Components (Current)

ALPS (Abstract Library for Parallel Search)
- is the search-handling layer (parallel and sequential).
- provides various search strategies based on node priorities.

BiCePS (Branch, Constrain, and Price Software)
- is the data-handling layer for relaxation-based optimization.
- adds notion of variables and constraints.
- assumes iterative bounding process.

BLIS (BiCePS Linear Integer Solver)
- is a concretization of BiCePS.
- specific to models with linear constraints and objective function.
DIP: Overview of Methods

Cutting Plane Method (CPM)

CPM combines an *outer* approximation of \mathcal{P}' with an explicit description of \mathcal{Q}''

- **Master:** $z_{CP} = \min_{x \in \mathbb{R}^n} \{ c^\top x \mid Dx \geq d, A''x \geq b'' \}$
- **Subproblem:** $\text{SEP}(\mathcal{P}', x_{CP})$

Dantzig-Wolfe Method (DW)

DW combines an *inner* approximation of \mathcal{P}' with an explicit description of \mathcal{Q}''

- **Master:** $z_{DW} = \min_{\lambda \in \mathbb{R}^E_+} \{ c^\top (\sum_{s \in E} s\lambda_s) \mid A'' (\sum_{s \in E} s\lambda_s) \geq b'', \sum_{s \in E} \lambda_s = 1 \}$
- **Subproblem:** $\text{OPT}(\mathcal{P}', c^\top - u_{DW} A'')$

Lagrangian Method (LD)

LD iteratively produces single extreme points of \mathcal{P}' and uses their violation of constraints of \mathcal{Q}'' to converge to the same optimal face of \mathcal{P}' as CPM and DW.

- **Master:** $z_{LD} = \max_{u \in \mathbb{R}^m_+} \{ \min_{s \in E} \{ c^\top s + u^\top (b'' - A'' s) \} \}$
- **Subproblem:** $\text{OPT}(\mathcal{P}', c^\top - u_{LD} A'')$
The **LP bound** is obtained by optimizing over the intersection of two explicitly defined polyhedra.

\[
\begin{align*}
z_{LP} &= \min_{x \in \mathbb{R}^n} \{ c^\top x \mid x \in Q' \cap Q'' \} \\
\end{align*}
\]

The **decomposition bound** is obtained by optimizing over the intersection of two polyhedra.

\[
\begin{align*}
z_{CP} = z_{DW} = z_{LD} = z_D &= \min_{x \in \mathbb{R}^n} \{ c^\top x \mid x \in P' \cap Q'' \} \geq z_{LP}
\end{align*}
\]

Decomposition-based bounding methods have two main steps

- **Master Problem:** Update the primal/dual solution information
- **Subproblem:** Update the approximation of \(P' \): \(\text{SEP}(P', x) \) or \(\text{OPT}(P', c) \)

Integrated decomposition methods further improve the bound.

- **Price-and-Cut** (PC)
- **Relax-and-Cut** (RC)
- **Decompose-and-Cut** (DC)
Traditionally, decomposition-based branch-and-bound methods have required extensive problem-specific customization.

- Identifying the decomposition (which constraints to relax).
- Formulating and solving the subproblem.
- Formulating and solving the master problem.
- Performing the branching operation.

However, it is possible to replace these components with generic alternatives.

- The decomposition can be identified automatically by analyzing the matrix or through a modeling language.
- The subproblem can be solved with a generic MILP solver.
- The branching can be done in the original compact formulation.

The remainder of the talk focuses on the crucial first step.
Automatic Structure Detection

- For problems in which the structure is not given, it may be detected automatically.
- Hypergraph partitioning methods can be used to identify the structure.
- We map each row of the original matrix to a hyperedge and the nonzero elements to nodes in a hypergraph.
- We use a partitioning model/algorithm (hMetis) that identifies a singly-bordered block diagonal matrix with a given number of blocks.
Hidden Block Structure

MIPLIB2003 instance: p2756

nz = 8937
Hidden Block Structure

Instance p2756 with 10 blocks partitioning
Choosing the Block Number
The goal of the partitioning is to have a “good decomposition.”
Generally, we judge goodness in terms of bound and computation time.

Potential Features

- The fraction of nonzero elements in the matrix appearing in the coupling rows (α),
- The fraction of nonzero elements appearing in the coupling rows that are in integer columns (β),
- The fraction of the nonzero elements in integer columns in the matrix that appear in coupling rows (γ),
- The average fraction of the nonzeros in each block that are in integer columns (η),
- The standard deviation of the fraction of integer elements in the blocks (θ).

$$\Pi = (1 - \min(\alpha, \gamma)) \times 100\%,$$
Finding the Structure

- In many cases, there is a “natural” block structure arising from the original model.
- Problems for which decomposition is the “killer approach” often have identical blocks, since this leads to symmetry in the compact formulation.
- We would like to be able to identify this structure automatically.
- One simple strategy is to make a frequency table.

<table>
<thead>
<tr>
<th># of Nonzeros</th>
<th>2</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>24</th>
<th>40</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td># of Rows</td>
<td>2220</td>
<td>20</td>
<td>20</td>
<td>2</td>
<td>1998</td>
<td>100</td>
<td>20</td>
</tr>
</tbody>
</table>

Table: Histogram for atm20-100

<table>
<thead>
<tr>
<th># of Nonzeros</th>
<th>2</th>
<th>3</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>13</th>
</tr>
</thead>
<tbody>
<tr>
<td># of Rows</td>
<td>9</td>
<td>130</td>
<td>221</td>
<td>4</td>
<td>8</td>
<td>8</td>
<td>7</td>
<td>6</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

Table: Histogram for glass4
from products import REQUIREMENT, PRODUCTS
from facilities import FIXED_CHARGE, LOCATIONS, CAPACITY

prob = dippy.DipProblem("Facility_Location")

ASSIGNMENTS = [(i, j) for i in LOCATIONS for j in PRODUCTS]
assign_vars = LpVariable.dicts("x", ASSIGNMENTS, 0, 1, LpBinary)
use_vars = LpVariable.dicts("y", LOCATIONS, 0, 1, LpBinary)

prob += lpSum(use_vars[i] * FIXED_COST[i] for i in LOCATIONS)

for j in PRODUCTS:
 prob += lpSum(assign_vars[(i, j)] for i in LOCATIONS) == 1

for i in LOCATIONS:
 prob.relaxation[i] += lpSum(assign_vars[(i, j)] * REQUIREMENT[j] for j in PRODUCTS) <= CAPACITY * use_vars[i]

dippy.Solve(prob, {doPriceCut:1})
DipPy Callbacks

def solve_subproblem(prob, index, redCosts, convexDual):
 ...
 return knapsack01(obj, weights, CAPACITY)
def knapsack01(obj, weights, capacity):
 ...
 return solution
def first_fit(prob):
 ...
 return bvs
prob.init_vars = first_fit
def choose_branch(prob, sol):
 ...
 return ([], down_branch_ub, up_branch_lb, [])
def generate_cuts(prob, sol):
 ...
 return new_cuts
def heuristics(prob, xhat, cost):
 ...
 return sols
dippy.Solve(prob, {'doPriceCut': '1'})
Brief Computational Results

Figure: Structured instances (Wedding planner) but without blocks given

Ralphs, Galati, O'Sullivan, Wang

Generic Decomposition
Exploiting Concurrency

Concurrency can be exploited in multiple ways.

- Solving the subproblems
- Exploring the tree
- Determining the decomposition (or whether to use decomposition)
Brief Computational Results

Figure: Parallel efficiency for structured instances (Wedding planner)

Ralphs, Galati, O'Sullivan, Wang

Generic Decomposition
Future work

Where do I start??

- We have only scratched the surface of what is needed to make a true generic decomposition-based solver.
- The implementation needs many improvements in basic components.
- We need a better decision logic for when to use which algorithm.
- We need better support for identical blocks.
- To exploit parallelism, we need the ability to dynamically allocate cores after the initial phase.
- We need more testing on hybrid distributed/shared parallelism.
- Methods that hybridize CP and MIP through the decomposition would be interesting.

Want to help :)?
Get DIP and DipPy

www.coin-or.org/DIP

easy_install coinor.dippy

Questions?