DIP with CHiPPS:
Decomposition Methods for Integer Linear Programming

Ted Ralphs
Lehigh University
Matthew Galati
SAS Institute

ExxonMobil, 21 October 2011

Thanks: Work supported in part by the National Science Foundation
Outline

1 Motivation

2 Methods
 - Cutting Plane Method
 - Dantzig-Wolfe Method
 - Lagrangian Method
 - Integrated Methods
 - Algorithmic Details

3 Software

4 Interfaces
 - DIPPY
 - MILPBlock

5 Current and Future Research
Outline

1 Motivation

2 Methods
 - Cutting Plane Method
 - Dantzig-Wolfe Method
 - Lagrangian Method
 - Integrated Methods
 - Algorithmic Details

3 Software

4 Interfaces
 - DIPPY
 - MILPBlock

5 Current and Future Research
The general form of a *mathematical programming model* is

$$\begin{align*}
\text{min} & \quad f(x) \\
\text{s.t.} & \quad g_i(x) \begin{cases} \leq & b_i \\ \geq & \end{cases} \quad \forall i \\
& \quad x \in X
\end{align*}$$

where $X \subseteq \mathbb{R}^n$ is an (implicitly defined) set that may be discrete.

- A *mathematical programming problem* is a problem that can be expressed using a mathematical programming model (called the *formulation*).

- A single mathematical programming problem can be represented using many different formulations (*important!*).
Our Basic Setting

Integer Linear Program: Minimize/Maximize a linear *objective function* over a (discrete) set of *solutions* satisfying specified *linear constraints*.

\[
\begin{align*}
Z_{\text{IP}} &= \min_{x \in \mathbb{Z}^n} \left\{ c^\top x \mid A'x \geq b', A''x \geq b'' \right\} \\
Z_{\text{LP}} &= \min_{x \in \mathbb{R}^n} \left\{ c^\top x \mid A'x \geq b', A''x \geq b'' \right\}
\end{align*}
\]
Combinatorial Optimization Problem

\[CP = (E, \mathcal{F}) \] consists of

- A **ground set** \(E \),
- A set \(\mathcal{F} \subseteq 2^E \) of **feasible solutions**, and
- A **cost function** \(c \in \mathbb{Z}^E \) (optional).

The **cost** of \(S \in \mathcal{F} \) is \(c(S) = \sum_{e \in S} c_e \) and the problem is to find a least cost member of \(\mathcal{F} \).
Implicit enumeration techniques try to enumerate the solution space in an intelligent way. The most common algorithm of this type is branch and bound. Suppose F is the set of feasible solutions for a given MILP. We wish to solve $\min_{x \in F} c^\top x$.

Divide and Conquer

Consider a partition of F into subsets F_1, \ldots, F_k. Then

$$\min_{x \in F} c^\top x = \min_{1 \leq i \leq k} \{ \min_{x \in F_i} c^\top x \}.$$

We can then solve the resulting subproblems recursively.

Dividing the original problem into subproblems is called branching.

Taken to the extreme, this scheme is equivalent to complete enumeration.

We avoid complete enumeration primarily by deriving bounds on the value of an optimal solution to each subproblem.
A relaxation of an ILP is an auxiliary mathematical program for which
- the feasible region contains the feasible region for the original ILP, and
- the objective function value of each solution to the original ILP is not increased.
Relaxations can be used to efficiently get bounds on the value of the original integer program.

Types of Relaxations
- Continuous relaxation
- Combinatorial relaxation
- Lagrangian relaxations

Branch and Bound

Initialize the queue with \(F \). While there are subproblems in the queue, do

1. Remove a subproblem and solve its relaxation.
2. The relaxation is infeasible \(\Rightarrow \) subproblem is infeasible and can be pruned.
3. Solution is feasible for the MILP \(\Rightarrow \) subproblem solved (update upper bound).
4. Solution is not feasible for the MILP \(\Rightarrow \) lower bound.
 - If the lower bound exceeds the global upper bound, we can prune the node.
 - Otherwise, we branch and add the resulting subproblems to the queue.
Branching involves partitioning the feasible region by imposing a *valid disjunction* such that:

- All optimal solutions are in one of the members of the partition.
- The solution to the current relaxation is not in any of the members of the partition.
Branch and Bound Tree
What is the Goal of Decomposition?

Basic Idea: Exploit knowledge of underlying structural components of the model to improve the bound by developing a stronger relaxation.

Many complex models are built up from multiple underlying substructures.

- Subsystems linked by global constraints.
- Complex combinatorial structures obtained by combining simple ones.

We want to exploit knowledge of efficient, customized methodology for substructures.

This can be done in two primary ways (with many variants).

- Identify independent subsystems.
- Identify subsets of constraints that can be dealt with efficiently.
Example: Exposing Combinatorial Structure

Traveling Salesman Problem Formulation

\[
x(\delta(\{u\})) = 2 \quad \forall u \in V
\]
\[
x(E(S)) \leq |S| - 1 \quad \forall S \subseteq V, \ 3 \leq |S| \leq |V| - 1
\]
\[
x_e \in \{0, 1\} \quad \forall e \in E
\]
Example: Exposing Combinatorial Structure

Traveling Salesman Problem Formulation

\[
\begin{align*}
 x(\delta(\{u\})) &= 2 \quad \forall u \in V \\
 x(E(S)) &\leq |S| - 1 \quad \forall S \subset V, \ 3 \leq |S| \leq |V| - 1 \\
 x_e &\in \{0, 1\} \quad \forall e \in E
\end{align*}
\]

Two relaxations

Find a spanning subgraph with $|V|$ edges ($\mathcal{P}' = 1$-Tree)

\[
\begin{align*}
 x(\delta(\{0\})) &= 2 \\
 x(E(V)) &= |V| \\
 x(E(S)) &\leq |S| - 1 \quad \forall S \subset V \setminus \{0\}, \ 3 \leq |S| \leq |V| - 1 \\
 x_e &\in \{0, 1\} \quad \forall e \in E
\end{align*}
\]
Example: Exposing Combinatorial Structure

Traveling Salesman Problem Formulation

\[
x(\delta(\{u\})) = 2 \quad \forall u \in V
\]
\[
x(E(S)) \leq |S| - 1 \quad \forall S \subseteq V, \ 3 \leq |S| \leq |V| - 1
\]
\[
x_e \in \{0, 1\} \quad \forall e \in E
\]

Two relaxations

Find a spanning subgraph with \(|V|\) edges (\(\mathcal{P}' = 1\)-Tree)

\[
x(\delta(\{0\})) = 2
\]
\[
x(E(V)) = |V|
\]
\[
x(E(S)) \leq |S| - 1 \quad \forall S \subset V \setminus \{0\}, \ 3 \leq |S| \leq |V| - 1
\]
\[
x_e \in \{0, 1\} \quad \forall e \in E
\]

Find a 2-matching that satisfies the subtour constraints (\(\mathcal{P}' = 2\)-Matching)

\[
x(\delta(\{u\})) = 2 \quad \forall u \in V
\]
\[
x_e \in \{0, 1\} \quad \forall e \in E
\]
Example: Exposing Block Structure

- A motivation for decomposition is to expose *independent subsystems*.
- The key is to identify *block structure* in the constraint matrix.
- The separability lends itself nicely to *parallel implementation*.
A motivation for decomposition is to expose *independent subsystems*. The key is to identify *block structure* in the constraint matrix. The separability lends itself nicely to *parallel implementation*.

\[
\begin{pmatrix}
A_1'' & A_2'' & \cdots & A''_{\kappa} \\
A_1' & A_2' & & A'_{\kappa} \\
A_1 & & & \\
& & A_2 & \\
& & & \ddots \\
& & & A_{\kappa}
\end{pmatrix}
\]
A motivation for decomposition is to expose *independent subsystems*.

The key is to identify *block structure* in the constraint matrix.

The separability lends itself nicely to *parallel implementation*.

Example: Exposing Block Structure

- **Generalized Assignment Problem (GAP)**
 - The problem is to assign m tasks to n machines subject to *capacity constraints*.
 - An IP formulation of this problem is
 \[
 \begin{align*}
 \text{min} & \quad \sum_{i \in M} \sum_{j \in N} c_{ij} x_{ij} \\
 \sum_{j \in N} w_{ij} x_{ij} & \leq b_i \quad \forall i \in M \\
 \sum_{i \in M} x_{ij} & = 1 \quad \forall j \in N \\
 x_{ij} & \in \{0, 1\} \quad \forall i, j \in M \times N
 \end{align*}
 \]
 - The variable x_{ij} is one if task i is assigned to machine j.
 - The “profit” associated with assigning task i to machine j is c_{ij}.
Example: Eliminating Symmetry

- In some cases, the identified blocks are *identical*.
- In such cases, the original formulation will often be highly symmetric.
- The decomposition eliminates the symmetry by collapsing the identical blocks.

Vehicle Routing Problem (VRP)

\[
\begin{align*}
\text{min} & \quad \sum_{k \in M} \left(\sum_{(i,j) \in A} c_{ij} x_{ijk} \right) \\
& \quad \sum_{k \in M} \left(\sum_{j \in N} x_{ijk} \right) = 1 \quad \forall i \in V \\
& \quad \sum_{i \in V} \left(\sum_{j \in N} d_{ij} x_{ijk} \right) \leq C \quad \forall k \in M \\
& \quad \sum_{j \in N} x_{0jk} = 1 \quad \forall k \in M \\
& \quad \sum_{i \in N} x_{ihk} - \sum_{j \in N} x_{hjk} = 0 \quad \forall h \in V, k \in M \\
& \quad \sum_{i \in N} x_{i,n+1,k} = 1 \quad \forall k \in M \\
x_{ijk} \in \{0, 1\} \quad \forall (i, j) \in A, k \in M
\end{align*}
\]
Outline

1 Motivation

2 Methods
 - Cutting Plane Method
 - Dantzig-Wolfe Method
 - Lagrangian Method
 - Integrated Methods
 - Algorithmic Details

3 Software

4 Interfaces
 - DIPPY
 - MILPBlock

5 Current and Future Research
The Decomposition Principle in Integer Programming

Basic Idea: By leveraging our ability to solve the optimization/separation problem for a relaxation, we can improve the bound yielded by the LP relaxation.

\[
\begin{align*}
 z_{IP} &= \min_{x \in \mathbb{Z}^n} \left\{ c^\top x \mid A'x \geq b', A''x \geq b'' \right\} \\
 z_{LP} &= \min_{x \in \mathbb{R}^n} \left\{ c^\top x \mid A'x \geq b', A''x \geq b'' \right\} \\
 z_D &= \min_{x \in P'} \left\{ c^\top x \mid A''x \geq b'' \right\} \\
 z_{IP} &\geq z_D \geq z_{LP}
\end{align*}
\]

Assumptions:
- \(\text{OPT}(\mathcal{P}, c) \) and \(\text{SEP}(\mathcal{P}, x) \) are "hard"
- \(\text{OPT}(\mathcal{P}', c) \) and \(\text{SEP}(\mathcal{P}', x) \) are "easy"
- \(Q'' \) can be represented explicitly (description has polynomial size)
- \(\mathcal{P}' \) must be represented implicitly (description has exponential size)
The Decomposition Principle in Integer Programming

Basic Idea: By leveraging our ability to solve the optimization/separation problem for a relaxation, we can improve the bound yielded by the LP relaxation.

\[
\begin{align*}
z_{IP} &= \min_{x \in \mathbb{Z}^n} \left\{ c^\top x \mid A'x \geq b', A''x \geq b'' \right\} \\
z_{LP} &= \min_{x \in \mathbb{R}^n} \left\{ c^\top x \mid A'x \geq b', A''x \geq b'' \right\} \\
z_D &= \min_{x \in \mathcal{P}'} \left\{ c^\top x \mid A''x \geq b'' \right\} \\
\end{align*}
\]

\[z_{IP} \geq z_D \geq z_{LP}\]

Assumptions:
- \(\text{OPT}(\mathcal{P}, c)\) and \(\text{SEP}(\mathcal{P}, x)\) are "hard"
- \(\text{OPT}(\mathcal{P}', c)\) and \(\text{SEP}(\mathcal{P}', x)\) are "easy"
- \(\mathcal{Q}''\) can be represented explicitly (description has polynomial size)
- \(\mathcal{P}'\) must be represented implicitly (description has exponential size)
The Decomposition Principle in Integer Programming

Basic Idea: By leveraging our ability to solve the optimization/separation problem for a relaxation, we can improve the bound yielded by the LP relaxation.

\[
\begin{align*}
z_{IP} &= \min_{x \in \mathbb{Z}^n} \left\{ c^\top x \mid A'x \geq b', A''x \geq b'' \right\} \\
z_{LP} &= \min_{x \in \mathbb{R}^n} \left\{ c^\top x \mid A'x \geq b', A''x \geq b'' \right\} \\
z_D &= \min_{x \in P'} \left\{ c^\top x \mid A''x \geq b'' \right\}
\end{align*}
\]

\[z_{IP} \geq z_D \geq z_{LP}\]

Assumptions:
- \(\text{OPT}(P, c)\) and \(\text{SEP}(P, x)\) are “hard”
- \(\text{OPT}(P', c)\) and \(\text{SEP}(P', x)\) are “easy”
- \(Q''\) can be represented explicitly (description has polynomial size)
- \(P'\) must be represented implicitly (description has exponential size)

\(P' = \text{conv}\{x \in \mathbb{Z}^n \mid A'x \geq b'\}\)

\(Q'' = \{x \in \mathbb{R}^n \mid A''x \geq b''\}\)
The Decomposition Principle in Integer Programming

Basic Idea: By leveraging our ability to solve the optimization/separation problem for a relaxation, we can improve the bound yielded by the LP relaxation.

\[
\begin{align*}
 z_{IP} &= \min_{x \in \mathbb{Z}^n} \left\{ c^\top x \mid A'x \geq b', A''x \geq b'' \right\} \\
 z_{LP} &= \min_{x \in \mathbb{R}^n} \left\{ c^\top x \mid A'x \geq b', A''x \geq b'' \right\} \\
 z_{D} &= \min_{x \in P'} \left\{ c^\top x \mid A''x \geq b'' \right\} \\
 z_{IP} &\geq z_{D} \geq z_{LP}
\end{align*}
\]

Assumptions:
- OPT(\(P, c\)) and SEP(\(P, x\)) are “hard”
- OPT(\(P', c\)) and SEP(\(P', x\)) are “easy”
- \(Q''\) can be represented explicitly (description has polynomial size)
- \(P'\) must be represented implicitly (description has exponential size)
The Decomposition Principle in Integer Programming

Basic Idea: By leveraging our ability to solve the optimization/separation problem for a relaxation, we can improve the bound yielded by the LP relaxation.

\[
\begin{align*}
 z_{IP} & = \min_{x \in \mathbb{Z}^n} \left\{ c^\top x \mid A'x \geq b', A''x \geq b'' \right\} \\
 z_{LP} & = \min_{x \in \mathbb{R}^n} \left\{ c^\top x \mid A'x \geq b', A''x \geq b'' \right\} \\
 z_D & = \min_{x \in \mathbb{P}'} \left\{ c^\top x \mid A''x \geq b'' \right\} \\
 z_{IP} & \geq z_D \geq z_{LP}
\end{align*}
\]

Assumptions:

- **OPT(\(\mathcal{P}, c\))** and **SEP(\(\mathcal{P}, x\))** are **“hard”**
- **OPT(\(\mathcal{P}', c\))** and **SEP(\(\mathcal{P}', x\))** are **“easy”**
- \(Q''\) can be represented **explicitly** (description has polynomial size)
- \(\mathcal{P}'\) must be represented **implicitly** (description has exponential size)
Cutting Plane Method (CPM)

CPM combines an *outer* approximation of \mathcal{P}' with an explicit description of \mathcal{Q}''

- **Master:** $z_{CP} = \min_{x \in \mathbb{R}^n} \{ c^T x \mid Dx \geq d, A''x \geq b'' \}$
- **Subproblem:** $\text{SEP}(\mathcal{P}', x_{CP})$

$$\mathcal{P}' = \{ x \in \mathbb{R}^n \mid Dx \geq d \}$$

Exponential number of constraints
Cutting Plane Method (CPM)

CPM combines an outer approximation of \mathcal{P}' with an explicit description of \mathcal{Q}''

- **Master:** $z_{\text{CP}} = \min_{x \in \mathbb{R}^n} \{ c^T x \mid D x \geq d, A''x \geq b'' \}$
- **Subproblem:** $\text{SEP}(\mathcal{P}', x_{\text{CP}})$

\[
\mathcal{P}' = \{ x \in \mathbb{R}^n \mid D x \geq d \}
\]

Exponential number of constraints
CPM combines an outer approximation of P' with an explicit description of Q''

- **Master:** $z_{CP} = \min_{x \in \mathbb{R}^n} \{ c^T x \mid Dx \geq d, A''x \geq b'' \}$
- **Subproblem:** $\text{SEP}(P', x_{CP})$

$$P' = \{ x \in \mathbb{R}^n \mid Dx \geq d \}$$

Exponential number of constraints
Cutting Plane Method (CPM)

CPM combines an *outer* approximation of \mathcal{P}' with an explicit description of \mathcal{Q}''

- **Master:** $z_{CP} = \min_{x \in \mathbb{R}^n} \left\{ c^T x \mid Dx \geq d, A''x \geq b'' \right\}$
- **Subproblem:** $SEP(\mathcal{P}', x_{CP})$

$$\mathcal{P}' = \{ x \in \mathbb{R}^n \mid Dx \geq d \}$$

Exponential number of constraints

\[\cdots \cdots \]

\[\cdots \cdots \]

\[\cdots \cdots \]

\[\cdots \cdots \]
Dantzig-Wolfe Method (DW)

DW combines an *inner* approximation of \mathcal{P}' with an explicit description of \mathcal{Q}''

- **Master:** $z_{DW} = \min_{\lambda \in \mathbb{R}^E_+} \left\{ c^\top (\sum_{s \in \mathcal{E}} s \lambda_s) \mid A'' (\sum_{s \in \mathcal{E}} s \lambda_s) \geq b'', \sum_{s \in \mathcal{E}} \lambda_s = 1 \right\}$

- **Subproblem:** $\text{OPT} (\mathcal{P}', c^\top - u_{DW}^\top A'')$

$$\mathcal{P}' = \left\{ x \in \mathbb{R}^n \mid x = \sum_{s \in \mathcal{E}} s \lambda_s, \sum_{s \in \mathcal{E}} \lambda_s = 1, \lambda_s \geq 0 \forall s \in \mathcal{E} \right\}$$

Exponential number of variables

![Diagram](image-url)
Dantzig-Wolfe Method (DW)

DW combines an *inner* approximation of \mathcal{P}' with an explicit description of \mathcal{Q}''

- **Master:** $z_{\text{DW}} = \min_{\lambda \in \mathbb{R}_{+}^E} \left\{ c^T \left(\sum_{s \in \mathcal{E}} s \lambda_s \right) \mid A'' \left(\sum_{s \in \mathcal{E}} s \lambda_s \right) \geq b'', \sum_{s \in \mathcal{E}} \lambda_s = 1 \right\}$
- **Subproblem:** $\text{OPT} \left(\mathcal{P}', c^T - u_{\text{DW}}^T A'' \right)$

$$\mathcal{P}' = \left\{ x \in \mathbb{R}^n \mid x = \sum_{s \in \mathcal{E}} s \lambda_s, \sum_{s \in \mathcal{E}} \lambda_s = 1, \lambda_s \geq 0 \forall s \in \mathcal{E} \right\}$$

Exponential number of variables
Dantzig-Wolfe Method (DW)

DW combines an *inner* approximation of \(\mathcal{P}' \) with an explicit description of \(\mathcal{Q}'' \)

- **Master:** \(z_{DW} = \min_{\lambda \in \mathbb{R}_+} \left\{ c^T \left(\sum_{s \in \mathcal{E}} s \lambda_s \right) \mid A'' \left(\sum_{s \in \mathcal{E}} s \lambda_s \right) \geq b'', \sum_{s \in \mathcal{E}} \lambda_s = 1 \right\} \)
- **Subproblem:** \(\text{OPT} (\mathcal{P}', c^T - u_{DW}^T A'') \)

\[
\mathcal{P}' = \left\{ x \in \mathbb{R}^n \mid x = \sum_{s \in \mathcal{E}} s \lambda_s, \sum_{s \in \mathcal{E}} \lambda_s = 1, \lambda_s \geq 0 \forall s \in \mathcal{E} \right\}
\]

Exponential number of variables
Dantzig-Wolfe Method (DW)

DW combines an *inner* approximation of \mathcal{P}' with an explicit description of \mathcal{Q}''

- **Master**: $z_{DW} = \min_{\lambda \in \mathbb{R}^{\mathcal{E}}} \left\{ c^T \left(\sum_{s \in \mathcal{E}} s \lambda_s \right) \mid A'' \left(\sum_{s \in \mathcal{E}} s \lambda_s \right) \geq b'', \sum_{s \in \mathcal{E}} \lambda_s = 1 \right\}$
- **Subproblem**: OPT $\left(\mathcal{P}', c^T - u_{DW}^T A'' \right)$

\[
\mathcal{P}' = \left\{ x \in \mathbb{R}^n \mid x = \sum_{s \in \mathcal{E}} s \lambda_s, \sum_{s \in \mathcal{E}} \lambda_s = 1, \lambda_s \geq 0 \ \forall s \in \mathcal{E} \right\}
\]

Exponential number of variables
Lagrangian Method (LD)

LD iteratively produces single extreme points of \mathcal{P}' and uses their violation of constraints of \mathcal{Q}'' to converge to the same optimal face of \mathcal{P}' as CPM and DW.

- **Master:** $z_{LD} = \max_{u \in \mathbb{R}^m''} \left\{ \min_{s \in \mathcal{E}} \{c^\top s + u^\top (b'' - A'' s)\} \right\}$
- **Subproblem:** $\text{OPT} (\mathcal{P}', c^\top - u_{LD}^\top A'')$

\[
z_{LD} = \max_{\alpha \in \mathbb{R}, u \in \mathbb{R}^m''} \left\{ \alpha + b''^\top u \mid \left(c^\top - u^\top A'' \right) s - \alpha \geq 0 \forall s \in \mathcal{E} \right\} = z_{DW}
\]
Lagrangian Method (LD)

LD iteratively produces single extreme points of \mathcal{P}' and uses their violation of constraints of \mathcal{Q}'' to converge to the same optimal face of \mathcal{P}' as CPM and DW.

- **Master:** $z_{LD} = \max_{u \in \mathbb{R}^{m''}_+} \left\{ \min_{s \in \mathcal{E}} \left\{ \begin{bmatrix} c^\top \ s \right. + u^\top \left(b'' - A'' \ s \right) \right\} \right\}$

- **Subproblem:** $\text{OPT} \left(\mathcal{P}', c^\top - u_{LD}^\top A'' \right)$

\[
z_{LD} = \max_{\alpha \in \mathbb{R}, u \in \mathbb{R}^{m''}_+} \left\{ \alpha + b''^\top u \ \bigg| \ \left(c^\top - u^\top A'' \right) s - \alpha \geq 0 \ \forall s \in \mathcal{E} \right\} = z_{DW}
\]
LD iteratively produces single extreme points of \mathcal{P}' and uses their violation of constraints of \mathcal{Q}'' to converge to the same optimal face of \mathcal{P}' as CPM and DW.

Master: $z_{LD} = \max_{u \in \mathbb{R}^{m''}_{+}} \left\{ \min_{s \in \mathcal{E}} \left\{ c^\top s + u^\top (b'' - A'' s) \right\} \right\}$

Subproblem: $\text{OPT} \left(\mathcal{P}', c^\top - u_{LD}^\top A'' \right)$

$$z_{LD} = \max_{\alpha \in \mathbb{R}, u \in \mathbb{R}^{m''}_{+}} \left\{ \alpha + b''^\top u \left| \left(c^\top - u^\top A'' \right) s - \alpha \geq 0 \ \forall s \in \mathcal{E} \right\} = z_{DW}$$
Lagrangian Method (LD)

LD iteratively produces single extreme points of \mathcal{P}' and uses their violation of constraints of \mathcal{Q}'' to converge to the same optimal face of \mathcal{P}' as CPM and DW.

- **Master:** $z_{LD} = \max_{u \in \mathbb{R}^{m''}} \left\{ \min_{s \in \mathcal{E}} \left\{ c^T s + u^T (b'' - A'' s) \right\} \right\}$

- **Subproblem:** $\text{OPT} (\mathcal{P}', c^T - u_{LD}^T A'')$

\[
\begin{align*}
z_{LD} &= \max_{\alpha \in \mathbb{R}, u \in \mathbb{R}_+^{m''}} \left\{ \alpha + b''^T u \left| \begin{array}{l}
(c^T - u^T A'') s - \alpha \geq 0 \forall s \in \mathcal{E}
\end{array} \right. \right\} = z_{DW}
\end{align*}
\]
Common Threads

- The **LP bound** is obtained by optimizing over the intersection of two explicitly defined polyhedra.

 \[z_{\text{LP}} = \min_{x \in \mathbb{R}^n} \{ c^T x \mid x \in Q' \cap Q'' \} \]

- The **decomposition bound** is obtained by optimizing over the intersection of one explicitly defined polyhedron and one implicitly defined polyhedron.

 \[z_{\text{CP}} = z_{\text{DW}} = z_{\text{LD}} = z_{\text{D}} = \min_{x \in \mathbb{R}^n} \{ c^T x \mid x \in P' \cap Q'' \} \geq z_{\text{LP}} \]

- Traditional decomp-based bounding methods contain two primary steps:
 - **Master Problem**: Update the primal/dual solution information
 - **Subproblem**: Update the approximation of \(P' \): SEP(\(P' \), \(x \)) or OPT(\(P' \), \(c \))

- Integrated decomposition methods further improve the bound by considering two implicitly defined polyhedra whose descriptions are iteratively refined:
 - Price-and-Cut (PC)
 - Relax-and-Cut (RC)
 - Decompose-and-Cut (DC)
The **LP bound** is obtained by optimizing over the intersection of two explicitly defined polyhedra.

\[
z_{LP} = \min_{x \in \mathbb{R}^n} \{c^T x \mid x \in Q' \cap Q''\}
\]

The **decomposition bound** is obtained by optimizing over the intersection of one explicitly defined polyhedron and one implicitly defined polyhedron.

\[
z_{CP} = z_{DW} = z_{LD} = z_D = \min_{x \in \mathbb{R}^n} \{c^T x \mid x \in P' \cap Q''\} \geq z_{LP}
\]

Traditional decomp-based bounding methods contain two primary steps

- **Master Problem:** Update the primal/dual solution information
- **Subproblem:** Update the approximation of \(P': SEP(P', x)\) or \(OPT(P', c)\)

Integrated decomposition methods further improve the bound by considering two implicitly defined polyhedra whose descriptions are iteratively refined.

- Price-and-Cut (PC)
- Relax-and-Cut (RC)
- Decompose-and-Cut (DC)
Common Threads

The **LP bound** is obtained by optimizing over the intersection of two explicitly defined polyhedra.

\[z_{LP} = \min_{x \in \mathbb{R}^n} \{ c^\top x \mid x \in Q' \cap Q'' \} \]

The **decomposition bound** is obtained by optimizing over the intersection of one explicitly defined polyhedron and one implicitly defined polyhedron.

\[z_{CP} = z_{DW} = z_{LD} = z_{D} = \min_{x \in \mathbb{R}^n} \{ c^\top x \mid x \in P' \cap Q'' \} \geq z_{LP} \]

Traditional decomp-based bounding methods contain two primary steps

- **Master Problem**: Update the primal/dual solution information
- **Subproblem**: Update the approximation of \(P' \): \(\text{SEP}(P', x) \) or \(\text{OPT}(P', c) \)

Integrated decomposition methods further improve the bound by considering two implicitly defined polyhedra whose descriptions are iteratively refined.

- **Price-and-Cut** (PC)
- **Relax-and-Cut** (RC)
- **Decompose-and-Cut** (DC)
Decompose-and-Cut: Each iteration of CPM, decompose into convex combo of e.p.’s of P'

$$\min_{\lambda \in \mathbb{R}_+^E, (x^+, x^-) \in \mathbb{R}_+^n} \left\{ x^+ + x^- \left| \sum_{s \in E} s \lambda_s + x^+ - x^- = \hat{x}_{CP}, \sum_{s \in E} \lambda_s = 1 \right. \right\}$$
Decompose-and-Cut (DC)

Decompose-and-Cut: Each iteration of CPM, decompose into convex combo of e.p.’s of \mathcal{P}'

\[
\min_{\lambda \in \mathbb{R}_+^E, (x^+, x^-) \in \mathbb{R}_+^n} \left\{ x^+ + x^- \middle| \sum_{s \in \mathcal{E}} s\lambda_s + x^+ - x^- = \hat{x}_{CP}, \sum_{s \in \mathcal{E}} \lambda_s = 1 \right\}
\]

- If \hat{x}_{CP} lies outside \mathcal{P}' the decomposition will fail
- By the Farkas Lemma the proof of infeasibility provides a valid and violated inequality

Decomposition Cuts

\[
u_{DC}^t s + \alpha_{DC}^t \leq 0 \quad \forall s \in \mathcal{P}' \quad \text{and} \quad u_{DC}^t \hat{x}_{CP} + \alpha_{DC}^t > 0
\]
Decompose-and-Cut (DC)

Decompose-and-Cut: Each iteration of CPM, decompose into convex combo of e.p.'s of \mathcal{P}'.

\[
\min_{\lambda \in \mathbb{R}^E_+, (x^+, x^-) \in \mathbb{R}^n_+} \left\{ x^+ + x^- \mid \sum_{s \in \mathcal{E}} s\lambda_s + x^+ - x^- = \hat{x}_{\text{CP}}, \sum_{s \in \mathcal{E}} \lambda_s = 1 \right\}
\]

- Originally proposed as a method to solve the VRP with TSP as relaxation.
- Essentially, we are transforming an optimization algorithm into a separation algorithm.
- The machinery for solving this already exists (=column generation)
- Much easier than DW problem because it's a feasibility problem and
 - $\hat{x}_i = 0 \Rightarrow s_i = 0$, can remove constraints not in support, and
 - $\hat{x}_i = 1$ and $s_i \in \{0, 1\} \Rightarrow$ constraint is redundant with convexity constraint
 - Often gets lucky and produces incumbent solutions to original IP
By default, we branch on variables in the compact space.

In PC, this is done by mapping back to the compact space \(\hat{x} = \sum_{s \in \mathcal{E}} s \hat{\lambda}_s \).

Variable branching in the compact space is constraint branching in the extended space.

This idea makes it possible define generic branching procedures.
By default, we branch on variables in the compact space.

In PC, this is done by mapping back to the compact space $\hat{x} = \sum_{s \in E} s \hat{\lambda}_s$.

Variable branching in the compact space is constraint branching in the extended space.

This idea makes it possible define generic branching procedures.
By default, we branch on variables in the compact space.

In PC, this is done by mapping back to the compact space \(\hat{x} = \sum_{s \in \mathcal{E}} s \hat{\lambda}_s \).

Variable branching in the compact space is constraint branching in the extended space.

This idea makes it possible define generic branching procedures.
By default, we branch on variables in the compact space.

In PC, this is done by mapping back to the compact space \(\hat{x} = \sum_{s \in \mathcal{E}} s \hat{\lambda}_s \).

Variable branching in the compact space is constraint branching in the extended space.

This idea makes it possible define generic branching procedures.
Branching for Lagrangian Method

In general, Lagrangian methods do not provide a primal solution λ

Let B define the extreme points found in solving subproblems for z_{LD}

Build an inner approximation using this set, then proceed as in PC

$$\mathcal{P}_I = \left\{ x \in \mathbb{R}^n \right\} \left| x = \sum_{s \in B} s \lambda_s, \sum_{s \in B} \lambda_s = 1, \lambda_s \geq 0 \forall s \in B \right\}$$

$$\min_{\lambda \in \mathbb{R}_+^B} \left\{ c^T \left(\sum_{s \in B} s \lambda_s \right) \right\} \left| A'' \left(\sum_{s \in B} s \lambda_s \right) \geq b'', \sum_{s \in B} \lambda_s = 1 \right\}$$

Closely related to volume algorithm and bundle methods
Branching for Lagrangian Method

- In general, Lagrangian methods do not provide a primal solution λ
- Let B define the extreme points found in solving subproblems for z_{LD}
- Build an inner approximation using this set, then proceed as in PC

$$\mathcal{P}_I = \left\{ x \in \mathbb{R}^n \mid x = \sum_{s \in B} s \lambda_s, \sum_{s \in B} \lambda_s = 1, \lambda_s \geq 0 \forall s \in B \right\}$$

$$\min_{\lambda \in \mathbb{R}_+^B} \left\{ c^\top \left(\sum_{s \in B} s \lambda_s \right) \mid A'' \left(\sum_{s \in B} s \lambda_s \right) \geq b'', \sum_{s \in B} \lambda_s = 1 \right\}$$

- Closely related to volume algorithm and bundle methods
Branching for Lagrangian Method

In general, Lagrangian methods do not provide a primal solution λ

Let B define the extreme points found in solving subproblems for z_{LD}

Build an inner approximation using this set, then proceed as in PC

$$P_I = \left\{ x \in \mathbb{R}^n \mid x = \sum_{s \in B} s\lambda_s, \sum_{s \in B} \lambda_s = 1, \lambda_s \geq 0 \forall s \in B \right\}$$

$$\min_{\lambda \in \mathbb{R}_+^B} \left\{ c^T \left(\sum_{s \in B} s\lambda_s \right) \mid A'' \left(\sum_{s \in B} s\lambda_s \right) \geq b'', \sum_{s \in B} \lambda_s = 1 \right\}$$

Closely related to volume algorithm and bundle methods
Separable subproblems (Important!)
- Identical subproblems (symmetry)
- Parallel solution of subproblems
- Automatic detection

Use of generic MILP solution technology
- Using the mapping $\hat{x} = \sum_{s \in E} s \hat{\lambda}_s$ we can use generic MILP generation in RC/PC context
- Use generic MILP solver to solve subproblems.
- With automatic block decomposition can allow solution of generic MILPs with no customization!

Initial columns
- Solve $\text{OPT}(P', c + r)$ for random perturbations
- Solve $\text{OPT}(P_N)$ heuristically
- Run several iterations of LD or DC collecting extreme points

Price-and-branch heuristic
- For block-angular case, at end of each node, solve with $\lambda \in \mathbb{Z}$
- Used in root node by Barahona and Jensen (’98), we extend to tree
Algorithmic Details and Extensions

- **Separable subproblems** *(Important!)*
 - Identical subproblems (symmetry)
 - Parallel solution of subproblems
 - Automatic detection

- **Use of generic MILP solution technology**
 - Using the mapping $\hat{x} = \sum_{s \in \mathcal{E}} s \hat{\lambda}_s$ we can use generic MILP generation in RC/PC context
 - Use generic MILP solver to solve subproblems.
 - With automatic block decomposition can allow solution of generic MILPs with no customization!

- **Initial columns**
 - Solve $\text{OPT}(\mathcal{P}', c + r)$ for random perturbations
 - Solve $\text{OPT}(\mathcal{P}_N)$ heuristically
 - Run several iterations of LD or DC collecting extreme points

- **Price-and-branch heuristic**
 - For block-angular case, at end of each node, solve with $\lambda \in \mathbb{Z}$
 - Used in root node by Barahona and Jensen ('98), we extend to tree
Algorithmic Details and Extensions

- **Separable subproblems** *(Important!)*
 - Identical subproblems (symmetry)
 - Parallel solution of subproblems
 - Automatic detection

- **Use of generic MILP solution technology**
 - Using the mapping $\hat{x} = \sum_{s \in \mathcal{E}} s\hat{\lambda}_s$ we can use generic MILP generation in RC/PC context
 - Use generic MILP solver to solve subproblems.
 - With automatic block decomposition can allow solution of generic MILPs with no customization!

- **Initial columns**
 - Solve $\text{OPT}(\mathcal{P}', c + r)$ for random perturbations
 - Solve $\text{OPT}(\mathcal{P}_N)$ heuristically
 - Run several iterations of LD or DC collecting extreme points

- **Price-and-branch heuristic**
 - For block-angular case, at end of each node, solve with $\lambda \in \mathbb{Z}$
 - Used in *root node* by Barahona and Jensen (*'98), we extend to tree
Algorithmic Details and Extensions

- **Separable subproblems** *(Important!)*
 - Identical subproblems (symmetry)
 - Parallel solution of subproblems
 - Automatic detection

- **Use of generic MILP solution technology**
 - Using the mapping \(\hat{x} = \sum_{s \in \mathcal{E}} s \hat{\lambda}_s \) we can use generic MILP generation in RC/PC context
 - Use generic MILP solver to solve subproblems.
 - With automatic block decomposition can allow solution of generic MILPs with no customization!

- **Initial columns**
 - Solve \(\text{OPT}(\mathcal{P}', c + r) \) for random perturbations
 - Solve \(\text{OPT}(\mathcal{P}_N) \) heuristically
 - Run several iterations of LD or DC collecting extreme points

- **Price-and-branch heuristic**
 - For block-angular case, at end of each node, solve with \(\lambda \in \mathbb{Z} \)
 - Used in *root node* by Barahona and Jensen (’98), we extend to tree
Algorithmic Details and Extensions (cont.)

- **Choice of master LP solver**
 - Dual simplex after adding rows or adjusting bounds (warm-start dual feasible)
 - Primal simplex after adding columns (warm-start primal feasible)
 - Interior-point methods might help with stabilization vs extremal duals

- Compression of master LP and object pools
 - Reduce size of master LP, improve efficiency of subproblem processing

- Nested pricing
 - Can solve more constrained versions of subproblem heuristically to get high quality columns.
Choice of master LP solver
- Dual simplex after adding rows or adjusting bounds (warm-start dual feasible)
- Primal simplex after adding columns (warm-start primal feasible)
- Interior-point methods might help with stabilization vs extremal duals

Compression of master LP and object pools
- Reduce size of master LP, improve efficiency of subproblem processing

Nested pricing
- Can solve more constrained versions of subproblem heuristically to get high quality columns.
Algorithmic Details and Extensions (cont.)

- **Choice of master LP solver**
 - Dual simplex after adding rows or adjusting bounds (warm-start dual feasible)
 - Primal simplex after adding columns (warm-start primal feasible)
 - Interior-point methods might help with stabilization vs extremal duals

- **Compression of master LP and object pools**
 - Reduce size of master LP, improve efficiency of subproblem processing

- **Nested pricing**
 - Can solve more constrained versions of subproblem heuristically to get high quality columns.
Motivation

Methods
- Cutting Plane Method
- Dantzig-Wolfe Method
- Lagrangian Method
- Integrated Methods
- Algorithmic Details

Software

Interfaces
- DIPPY
- MILPBlock

Current and Future Research
The application of decomposition methods in practice is hindered by a number of serious drawbacks.

- *Implementation is difficult*, usually requiring development of sophisticated customized codes.
- Choosing an algorithmic strategy *requires in-depth knowledge* of theory and strategies are *difficult to compare empirically*.
- The powerful techniques modern solvers use to solve integer programs are *difficult to integrate* with decomposition-based approaches.

DIP and CHiPPS are two frameworks that together allow for easier implementation of decomposition approaches.

- **CHiPPS** (COIN High Performance Parallel Search Software) is a flexible library hierarchy for implementing parallel search algorithms.
- **DIP** (Decomposition for Integer Programs) is a framework for implementing decomposition-based bounding methods.
- **DIP with CHiPPS** is a full-blown branch-and-cut-and-price framework in which details of the implementation are hidden from the user.

DIP can be accessed through a modeling language or by providing a model with notated structure.
DIP Framework

DIP (Decomposition for Integer Programming) is an open-source software framework that provides an implementation of various decomposition methods with minimal user responsibility.

- Allows direct comparison CPM/DW/LD/PC/RC/DC in one framework
- DIP abstracts the common, generic elements of these methods
- **Key:** The user defines application-specific components in the space of the compact formulation - greatly simplifying the API
 - Define \([A'', b'']\) and/or \([A', b']\)
 - Provide methods for \(\text{OPT}(P', c)\) and/or \(\text{SEP}(P', x)\)
- Framework handles all of the algorithm-specific reformulation
DIP Framework: Implementation

DIP was built around data structures and interfaces provided by COIN-OR

The **DIP** framework, written in C++, is accessed through two user interfaces:
- **Applications Interface**: DecompApp
- **Algorithms Interface**: DecompAlgo

DIP provides the bounding method for branch and bound

ALPS (Abstract Library for Parallel Search) provides the framework for tree search
- **AlpsDecompModel** : public AlpsModel
 - a wrapper class that calls (data access) methods from DecompApp
- **AlpsDecompTreeNode** : public AlpsTreeNode
 - a wrapper class that calls (algorithmic) methods from DecompAlgo
DIP Framework: Creating an Application (C++ API)

- The base class `DecompApp` provides an interface for user to define the application-specific components of their algorithm
- Define the model(s)
 - `setModelObjective(double * c)`: define c
 - `setModelCore(DecompConstraintSet * model)`: define Q''
 - `setModelRelaxed(DecompConstraintSet * model, int block)`: define Q' [optional]
- `solveRelaxed()`: define a method for $\text{OPT}(P', c)$ [optional, if Q', CBC is built-in]
- `generateCuts()`: define a method for $\text{SEP}(P', x)$ [optional, CGL is built-in]
- `isUserFeasible()`: is $\hat{x} \in P$? [optional, if $P = \text{conv}(P' \cap Q'' \cap \mathbb{Z})$]
- All other methods have appropriate defaults but are virtual and may be overridden
The base class `DecompAlgo` provides the shell (init / master / subproblem / update).

Each of the methods described has derived default implementations `DecompAlgoX`:

```
public DecompAlgo
```

which are accessible by any application class, allowing full flexibility.

New, hybrid or extended methods can be easily derived by overriding the various subroutines, which are called from the base class. For example,

- Alternative methods for solving the master LP in DW, such as **interior point methods**
- Add stabilization to the dual updates in LD (stability centers)
- For LD, replace subgradient with **volume** providing an approximate primal solution
- Hybrid init methods like using LD or DC to initialize the columns of the DW master
- During PC, adding cuts to either master and/or subproblem.

...
DIP Framework: Example Applications

<table>
<thead>
<tr>
<th>Application</th>
<th>Description</th>
<th>(P')</th>
<th>OPT((c))</th>
<th>SEP((x))</th>
<th>Input</th>
</tr>
</thead>
<tbody>
<tr>
<td>AP3</td>
<td>3-index assignment</td>
<td>AP</td>
<td>Jonker</td>
<td>user</td>
<td>user</td>
</tr>
<tr>
<td>ATM</td>
<td>cash management (SAS COE)</td>
<td>MILP(s)</td>
<td>CBC</td>
<td>CGL</td>
<td>user</td>
</tr>
<tr>
<td>GAP</td>
<td>generalized assignment</td>
<td>KP(s)</td>
<td>Pisinger</td>
<td>CGL</td>
<td>user</td>
</tr>
<tr>
<td>MAD</td>
<td>matrix decomposition</td>
<td>MaxClique</td>
<td>Cliquer</td>
<td>CGL</td>
<td>user</td>
</tr>
<tr>
<td>MILP</td>
<td>random partition into (A', A'')</td>
<td>MILP</td>
<td>CBC</td>
<td>CGL</td>
<td>mps</td>
</tr>
<tr>
<td>MILPBlock</td>
<td>user-defined blocks for (A')</td>
<td>MILP(s)</td>
<td>CBC</td>
<td>CGL</td>
<td>mps, block</td>
</tr>
<tr>
<td>MMKP</td>
<td>multi-dim/choice knapsack</td>
<td>MCKP</td>
<td>Pisinger</td>
<td>CGL</td>
<td>user</td>
</tr>
<tr>
<td>SILP</td>
<td>intro example, tiny IP</td>
<td>MILP</td>
<td>CBC</td>
<td>CGL</td>
<td>user</td>
</tr>
<tr>
<td>TSP</td>
<td>traveling salesman problem</td>
<td>1-Tree</td>
<td>Boost</td>
<td>Concorde</td>
<td>user</td>
</tr>
<tr>
<td>VRP</td>
<td>vehicle routing problem</td>
<td>(k)-TSP</td>
<td>Concorde</td>
<td>CVRPSEP</td>
<td>user</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(b)-Match</td>
<td>CBC</td>
<td>CVRPSEP</td>
<td>user</td>
</tr>
</tbody>
</table>
Outline

1. Motivation

2. Methods
 - Cutting Plane Method
 - Dantzig-Wolfe Method
 - Lagrangian Method
 - Integrated Methods
 - Algorithmic Details

3. Software

4. Interfaces
 - DIPPY
 - MILPBlock

5. Current and Future Research
DIPPY provides an interface to DIP through the modeling language PuLP.
PuLP is a modeling language that provides functionality similar to other modeling languages.
It is built on top of Python so you get the full power of that language for free.
PuLP and DIPPY are being developed by Stuart Mitchell and Mike O'Sullivan in Auckland and are part of COIN.
Through DIPPY, a user can
- Specify the model and the relaxation, including the block structure.
- Implement methods (coded in Python) for solving the relaxation, generating cuts, custom branching, etc.
With DIP and DIPPY, it is possible to code a customized column-generation method from scratch in a few hours.
This would have taken months with previously available tools.
Example: Facility Location Problem

- We are given \(n \) facility locations and \(m \) customers to be serviced from those locations.
- There is a fixed cost \(c_j \) and a capacity \(W_j \) associated with facility \(j \).
- There is a cost \(d_{ij} \) and demand \(w_{ij} \) associated with serving customer \(i \) from facility \(j \).
- We have two sets of binary variables.
 - \(y_j \) is 1 if facility \(j \) is opened, 0 otherwise.
 - \(x_{ij} \) is 1 if customer \(i \) is served by facility \(j \), 0 otherwise.

Capacitated Facility Location Problem

\[
\begin{align*}
\text{min} & \quad \sum_{j=1}^{n} c_j y_j + \sum_{i=1}^{m} \sum_{j=1}^{n} d_{ij} x_{ij} \\
\text{s.t.} & \quad \sum_{j=1}^{n} x_{ij} = 1 \quad \forall i \\
& \quad \sum_{i=1}^{m} w_{ij} x_{ij} \leq W_j \quad \forall j \\
& \quad x_{ij} \leq y_j \quad \forall i, j \\
& \quad x_{ij}, y_j \in \{0, 1\} \quad \forall i, j
\end{align*}
\]
DIPPY Code for Facility Location

```
from facility_data import REQUIREMENT, PRODUCTS, LOCATIONS, CAPACITY

prob = dippy.DipProblem("Facility Location")

assign = LpVariable.dicts("Assignment", [(i, j) for i in LOCATIONS for j in PRODUCTS], 0, 1, LpBinary)
open = LpVariable.dicts("FixedCharge", LOCATIONS, 0, 1, LpBinary)

# objective: minimise waste
prob += lpSum(excess[i] for i in LOCATIONS), "min"

# assignment constraints
for j in PRODUCTS:
    prob += lpSum(assign[(i, j)] for i in LOCATIONS) == 1

# Aggregate capacity constraints
for i in LOCATIONS:
    prob.relaxation[i] += lpSum(assign[(i, j)]*REQUIREMENT[j] for j in PRODUCTS) + excess[i] == CAPACITY * open[i]

# Disaggregated capacity constraints
for i in LOCATIONS:
    for j in PRODUCTS:
        prob.relaxation[i] += assign[(i, j)] <= open[i]

# Ordering constraints
for index, location in enumerate(LOCATIONS):
    if index > 0:
        prob += use[LOCATIONS[index-1]] >= open[location]
```
DIPPY Auxiliary Methods for Facility Location

```python
def solve_subproblem(prob, index, redCosts, convexDual):
    ...
    z, solution = knapsack01(obj, weights, CAPACITY)
    ...
    return []
prob.relaxed_solver = solve_subproblem

def knapsack01(obj, weights, capacity):
    ...
    return c[n−1][capacity], solution

def first_fit(prob):
    ...
    return bvs

def one_each(prob):
    ...
    return bvs

dippy.Solve(prob, {
    'TolZero': '%s' % tol,
    'doPriceCut': '1',
    'generateInitVars': '1', },)
```
MILPBlock: Decomposition-based MILP Solver

- Many difficult MILPs have a block structure, but this structure is not part of the input (MPS) or is not exploitable by the solver.
- In practice, it is common to have models composed of independent subsystems coupled by global constraints.
- The result may be models that are highly symmetric and difficult to solve using traditional methods, but would be easy to solve if the structure were known.

\[
\begin{pmatrix}
A_1'' & A_2'' & \cdots & A_{\kappa}'' \\
A_1' & & & \\
& A_2' & & \\
& & \ddots & \\
& & & A_{\kappa}'
\end{pmatrix}
\]

- MILPBlock provides a black-box solver for applying integrated methods to generic MILP
- Input is an MPS/LP and a block file specifying structure.
- Optionally, the block file can be automatically generated using the hypergraph partitioning algorithm of HMetis.
- This is the engine underlying DIPPY.
Identifying Block Structure

- The problem of identifying the block structure of a matrix is difficult.
- At the moment, we identify block structure heuristically using a package for hypergraph partitioning called *HMetis*.
 - The columns of the matrix are identified with nodes in a hypergraph.
 - The edges of the hypergraph are the sets of columns corresponding to nonzeros in each row.
 - We partition the nodes in order to minimize the number of hyperedges in the resulting cut.
 - The hyperedges represent the linking rows.
- So far, this seems pretty effective, but this research is in its infancy.
Detected block structure for *10teams* instance

Hidden Block Structure

Detected block structure for *aflow30a* and *set1ch* instances

Hidden Block Structure

Structure with different numbers of blocks for fiber instance

Exploiting Block Structure

Relationship of Lower bound, running time and block number on instance vpm2

![Graph showing the relationship between Dantzig-Wolfe Bound, running time (s), and block number for instance vpm2.](image-url)
Bound Improvement

<table>
<thead>
<tr>
<th>insta</th>
<th>cols</th>
<th>rows</th>
<th>opt</th>
<th>k</th>
<th>DWR bound</th>
<th>CBC root</th>
</tr>
</thead>
<tbody>
<tr>
<td>10teams</td>
<td>2025</td>
<td>230</td>
<td>924</td>
<td>3</td>
<td>918.1</td>
<td>917</td>
</tr>
<tr>
<td>noswot</td>
<td>128</td>
<td>182</td>
<td>563.8</td>
<td>3</td>
<td>-41.2</td>
<td>-43</td>
</tr>
<tr>
<td>p2756</td>
<td>2756</td>
<td>755</td>
<td>3124</td>
<td>3</td>
<td>3115.5</td>
<td>2688.7</td>
</tr>
<tr>
<td>timtab1</td>
<td>397</td>
<td>171</td>
<td>764772</td>
<td>3</td>
<td>350885</td>
<td>28694</td>
</tr>
<tr>
<td>timtab2</td>
<td>675</td>
<td>294</td>
<td>1096560</td>
<td>3</td>
<td>431963</td>
<td>83592</td>
</tr>
<tr>
<td>vpm2</td>
<td>378</td>
<td>234</td>
<td>13.7</td>
<td>3</td>
<td>12.2</td>
<td>9.8</td>
</tr>
<tr>
<td>pg5_34</td>
<td>2600</td>
<td>125</td>
<td>-14339.4</td>
<td>3</td>
<td>-15179.2</td>
<td>-16646.5</td>
</tr>
<tr>
<td>pg</td>
<td>2700</td>
<td>125</td>
<td>-8674.34</td>
<td>3</td>
<td>-15179.2</td>
<td>-16646.5</td>
</tr>
<tr>
<td>k16x240</td>
<td>480</td>
<td>256</td>
<td>10674</td>
<td>3</td>
<td>3303.6</td>
<td>2769.8</td>
</tr>
</tbody>
</table>
Application - Block-Angular MILP (applied to Retail Optimization)

SAS Retail Optimization Solution

- Multi-tiered supply chain distribution problem where each block represents a store
- Prototype model developed in SAS/OR’s OPTMODEL (algebraic modeling language)

<table>
<thead>
<tr>
<th>Instance</th>
<th>CPX11</th>
<th>DIP-PC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Time</td>
<td>Gap</td>
</tr>
<tr>
<td>retail27</td>
<td>T 2.30%</td>
<td>2674921</td>
</tr>
<tr>
<td>retail31</td>
<td>T 0.49%</td>
<td>1434931</td>
</tr>
<tr>
<td>retail3</td>
<td>529.77</td>
<td>OPT</td>
</tr>
<tr>
<td>retail4</td>
<td>T 1.61%</td>
<td>1606911</td>
</tr>
<tr>
<td>retail6</td>
<td>1.12</td>
<td>OPT</td>
</tr>
</tbody>
</table>
Outline

1 Motivation

2 Methods
 - Cutting Plane Method
 - Dantzig-Wolfe Method
 - Lagrangian Method
 - Integrated Methods
 - Algorithmic Details

3 Software

4 Interfaces
 - DIPPY
 - MILPBlock

5 Current and Future Research
MILPBlock: Recently Added Features

Interfaces for Pricing Algorithms (for IBM Project)
- User can provide an initial dual vector
- User can manipulate duals used at each pass (and specify per block)
- User can select which block to process next (alternative to all or round-robin)

New Options
- Branching can be auto enforced in subproblem or master (when oracle is MILP)
- Ability to stop subproblem calculation on gap/time and calculate LB (can branch early)
- For oracles that provide it, allow multiple columns for each subproblem call
- Management of compression of columns - once master gap is tight

Performance
- Detection and removal of columns that are close to parallel
- Added basic dual stabilization (Wentges smoothing)
- Redesign (and simplification) of treatment of master-only variables.
MILPBlock: Recently Added Features

Interfaces for Pricing Algorithms (for IBM Project)
- User can provide an initial dual vector
- User can manipulate duals used at each pass (and specify per block)
- User can select which block to process next (alternative to all or round-robin)

New Options
- Branching can be auto enforced in subproblem or master (when oracle is MILP)
- Ability to stop subproblem calculation on gap/time and calculate LB (can branch early)
- For oracles that provide it, allow multiple columns for each subproblem call
- Management of compression of columns - once master gap is tight

Performance
- Detection and removal of columns that are close to parallel
- Added basic dual stabilization (Wentges smoothing)
- Redesign (and simplification) of treatment of master-only variables.
MILPBlock: Recently Added Features

Interfaces for Pricing Algorithms (for IBM Project)
- User can provide an initial dual vector
- User can manipulate duals used at each pass (and specify per block)
- User can select which block to process next (alternative to all or round-robin)

New Options
- Branching can be auto enforced in subproblem or master (when oracle is MILP)
- Ability to stop subproblem calculation on gap/time and calculate LB (can branch early)
- For oracles that provide it, allow multiple columns for each subproblem call
- Management of compression of columns - once master gap is tight

Performance
- Detection and removal of columns that are close to parallel
- Added basic dual stabilization (Wentges smoothing)
- Redesign (and simplification) of treatment of master-only variables.
Related Projects Currently using DIP

- **OSDip** – Optimization Services (OS) wraps DIP (in CoinBazaar)
 - University of Chicago – Kipp Martin
- **Dippy** – Python interface for DIP through PuLP
 - University of Auckland – Michael O’Sullivan
- **SAS** – surface MILPBlock-like solver for PROC OPTMODEL
 - SAS Institute – Matthew Galati
- **National Workforce Management, Cross-Training and Scheduling Project**
 - IBM Business Process Re-engineering – Alper Uygur
- **Transmission Switching Problem for Electricity Networks**
 - University of Denmark – Jonas Villumsem
 - University of Auckland – Andy Philipott
DIP@SAS in PROC OPTMODEL

- Prototype **PC** algorithm embedded in **PROC OPTMODEL** (based on MILPBlock)
- Minor API change - one new suffix on rows or cols (.block)

Preliminary Results (Recent Clients):

<table>
<thead>
<tr>
<th>Client Problem</th>
<th>IP-GAP</th>
<th>CPX12.1</th>
<th>Real-Time</th>
<th>CPX12.1</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATM Cash Management and Predictive Model (India)</td>
<td>OPT</td>
<td>∞</td>
<td>103</td>
<td>2000 (T)</td>
</tr>
<tr>
<td>ATM Cash Management (Singapore)</td>
<td>OPT</td>
<td>OPT</td>
<td>86</td>
<td>831</td>
</tr>
<tr>
<td>ATM Cash Management (Singapore)</td>
<td>OPT</td>
<td>OPT</td>
<td>90</td>
<td>783</td>
</tr>
<tr>
<td>Retail Inventory Optimization (UK)</td>
<td>1.6%</td>
<td>9%</td>
<td>1200</td>
<td>1200 (T)</td>
</tr>
<tr>
<td></td>
<td>4.7%</td>
<td>19%</td>
<td>1200</td>
<td>1200 (T)</td>
</tr>
<tr>
<td></td>
<td>2.6%</td>
<td>∞</td>
<td>1200</td>
<td>1200 (T)</td>
</tr>
</tbody>
</table>
Future Research

- **Branch-and-Relax-and-Cut** - computational focus thus far has been on CPM/DC/PC

 - Can we implement Gomory cuts in Price-and-Cut?

 - Similar to Interior Point crossover to Simplex, we can crossover from \hat{x} to a feasible basis, load that into the solver and generate tableau cuts

 - Will the design of OSI and CGL work like this? YES. J Forrest has added a crossover to OsiClp

- Other generic MILP techniques for **MILPBlock**: heuristics, branching strategies, presolve

- Better support for **identical subproblems** (using ideas of Vanderbeck)

- **Parallelization** of branch-and-bound

 - More work per node, communication overhead low - use ALPS

- **Parallelization** related to relaxed polyhedra (work-in-progress):

 - Pricing in block-angular case

 - Nested pricing - use idle cores to generate diverse set of columns simultaneously

 - Generation of decomposition cuts for various relaxed polyhedra - diversity of cuts
Future Research

- **Branch-and-Relax-and-Cut** - computational focus thus far has been on CPM/DC/PC

 Can we implement Gomory cuts in Price-and-Cut?

 - Similar to Interior Point crossover to Simplex, we can crossover from \(\hat{x} \) to a feasible basis, load that into the solver and generate tableau cuts
 - Will the design of OSI and CGL work like this? Yes. J Forrest has added a crossover to OsiClp

- Other generic MILP techniques for **MILPBlock**: heuristics, branching strategies, presolve

- Better support for **identical subproblems** (using ideas of Vanderbeck)

- **Parallelization** of branch-and-bound
 - More work per node, communication overhead low - use ALPS

- **Parallelization** related to relaxed polyhedra (work-in-progress):
 - Pricing in block-angular case
 - Nested pricing - use idle cores to generate diverse set of columns simultaneously
 - Generation of decomposition cuts for various relaxed polyhedra - diversity of cuts
Future Research

- **Branch-and-Relax-and-Cut** - computational focus thus far has been on CPM/DC/PC
- Can we implement **Gomory cuts** in Price-and-Cut?
 - Similar to Interior Point crossover to Simplex, we can crossover from \hat{x} to a feasible basis, load that into the solver and generate tableau cuts
 - Will the design of OSI and CGL work like this? **YES.** J Forrest has added a crossover to OsiClp
- Other generic MILP techniques for MILPBlock: heuristics, branching strategies, presolve
- Better support for identical subproblems (using ideas of Vanderbeck)
- Parallelization of branch-and-bound
 - More work per node, communication overhead low - use ALPS
- Parallelization related to relaxed polyhedra (work-in-progress):
 - Pricing in block-angular case
 - Nested pricing - use idle cores to generate diverse set of columns simultaneously
 - Generation of decomposition cuts for various relaxed polyhedra - diversity of cuts
Future Research

- **Branch-and-Relax-and-Cut** - computational focus thus far has been on CPM/DC/PC
- Can we implement **Gomory cuts** in Price-and-Cut?
 - Similar to Interior Point crossover to Simplex, we can crossover from \hat{x} to a feasible basis, load that into the solver and generate tableau cuts
 - Will the design of OSI and CGL work like this? **YES.** J Forrest has added a crossover to OsiClp
- Other generic MILP techniques for **MILPBlock**: heuristics, branching strategies, presolve
 - Better support for identical subproblems (using ideas of Vanderbeck)
 - **Parallelization** of branch-and-bound
 - More work per node, communication overhead low - use ALPS
 - **Parallelization** related to relaxed polyhedra (work-in-progress):
 - Pricing in block-angular case
 - Nested pricing - use idle cores to generate diverse set of columns simultaneously
 - Generation of decomposition cuts for various relaxed polyhedra - diversity of cuts
Future Research

- **Branch-and-Relax-and-Cut** - computational focus thus far has been on CPM/DC/PC
- Can we implement **Gomory cuts** in Price-and-Cut?
 - Similar to Interior Point crossover to Simplex, we can crossover from \hat{x} to a feasible basis, load that into the solver and generate tableau cuts
 - Will the design of OSI and CGL work like this? **YES.** J Forrest has added a crossover to OsiClp
- Other generic MILP techniques for **MILPBlock**: heuristics, branching strategies, presolve
- Better support for **identical subproblems** (using ideas of Vanderbeck)
 - Parallelization of branch-and-bound
 - More work per node, communication overhead low - use ALPS
 - Parallelization related to relaxed polyhedra (work-in-progress):
 - Pricing in block-angular case
 - Nested pricing - use idle cores to generate diverse set of columns simultaneously
 - Generation of decomposition cuts for various relaxed polyhedra - diversity of cuts
Future Research

- **Branch-and-Relax-and-Cut** - computational focus thus far has been on CPM/DC/PC
 - Can we implement **Gomory cuts** in Price-and-Cut?
 - Similar to Interior Point crossover to Simplex, we can crossover from \(\hat{x} \) to a feasible basis, load that into the solver and generate tableau cuts
 - Will the design of OSI and CGL work like this? **YES.** J Forrest has added a crossover to OsiClp
 - Other generic MILP techniques for **MILPBlock**: heuristics, branching strategies, presolve
 - Better support for **identical subproblems** (using ideas of Vanderbeck)
 - **Parallelization** of branch-and-bound
 - More work per node, communication overhead low - use ALPS
 - **Parallelization** related to relaxed polyhedra (work-in-progress):
 - Pricing in block-angular case
 - Nested pricing - use idle cores to generate diverse set of columns simultaneously
 - Generation of decomposition cuts for various relaxed polyhedra - diversity of cuts