A Framework for Decomposition in Integer Programming

Matthew Galati1 \quad Ted Ralphs2

1SAS Institute, Advanced Analytics, Operations Research R & D
2COR@L Lab, Department of Industrial and Systems Engineering, Lehigh University

International Symposium on Mathematical Programming 2009
Chicago, IL
Outline

1. Traditional Decomposition Methods
2. Integrated Decomposition Methods
3. Decompose and Cut
4. DECOMP Framework
5. ATM Cash Management Problem
6. Work in Progress
The Decomposition Principle in Integer Programming

Basic Idea: By leveraging our ability to solve the optimization/separation problem for a relaxation, we can improve the bound yielded by the LP relaxation.

\[
\begin{align*}
z_{IP} &= \min_{x \in \mathbb{Z}^n} \{ c^T x \mid A' x \geq b', A'' x \geq b'' \} \\
z_{LP} &= \min_{x \in \mathbb{R}^n} \{ c^T x \mid A' x \geq b', A'' x \geq b'' \} \\
z_D &= \min_{x \in \mathcal{P}'} \{ c^T x \mid A'' x \geq b'' \}
\end{align*}
\]

\[z_{IP} \geq z_D \geq z_{LP}\]

Assumptions:

- \(OPT(c, \mathcal{P}) \) and \(SEP(x, \mathcal{P}) \) are “hard”.
- \(OPT(c, \mathcal{P}') \) and \(SEP(x, \mathcal{P}') \) are “easy”.
- \(Q'' \) can be represented explicitly (description has polynomial size).
- \(\mathcal{P}' \) must be represented implicitly (description has exponential size).

\[\mathcal{P} = \text{conv}\{x \in \mathbb{Z}^n \mid A' x \geq b', A'' x \geq b''\}\]
The Decomposition Principle in Integer Programming

Basic Idea: By leveraging our ability to solve the optimization/separation problem for a relaxation, we can improve the bound yielded by the LP relaxation.

\[
\begin{align*}
Z_{\text{IP}} &= \min_{x \in \mathbb{Z}^n} \{ c^T x \mid A'x \geq b', A''x \geq b'' \} \\
Z_{\text{LP}} &= \min_{x \in \mathbb{R}^n} \{ c^T x \mid A'x \geq b', A''x \geq b'' \} \\
Z_D &= \min_{x \in P'} \{ c^T x \mid A''x \geq b'' \}
\end{align*}
\]

\[Z_{\text{IP}} \geq Z_D \geq Z_{\text{LP}}\]

Assumptions:
- \(\text{OPT}(c, P)\) and \(\text{SEP}(x, P)\) are "hard".
- \(\text{OPT}(c, P')\) and \(\text{SEP}(x, P')\) are "easy".
- \(Q''\) can be represented explicitly (description has polynomial size).
- \(P'\) must be represented implicitly (description has exponential size).

\[
\begin{align*}
Q' &= \{ x \in \mathbb{R}^n \mid A'x \geq b' \} \\
Q'' &= \{ x \in \mathbb{R}^n \mid A''x \geq b'' \}
\end{align*}
\]
The Decomposition Principle in Integer Programming

Basic Idea: By leveraging our ability to solve the optimization/separation problem for a relaxation, we can improve the bound yielded by the LP relaxation.

\[
\begin{align*}
\text{z}_{IP} &= \min_{x \in \mathbb{Z}^n} \{ c^\top x \mid A'x \geq b', A''x \geq b'' \} \\
\text{z}_{LP} &= \min_{x \in \mathbb{R}^n} \{ c^\top x \mid A'x \geq b', A''x \geq b'' \} \\
\text{z}_{D} &= \min_{x \in \mathcal{P}'} \{ c^\top x \mid A''x \geq b'' \}
\end{align*}
\]

\[z_{IP} \geq z_{D} \geq z_{LP}\]

Assumptions:
- \(\text{OPT}(c, \mathcal{P})\) and \(\text{SEP}(x, \mathcal{P})\) are “hard”.
- \(\text{OPT}(c, \mathcal{P}')\) and \(\text{SEP}(x, \mathcal{P}')\) are “easy”.
- \(\mathcal{Q}''\) can be represented explicitly (description has polynomial size).
- \(\mathcal{P}'\) must be represented implicitly (description has exponential size).

\[\mathcal{P}' = \text{conv}\{x \in \mathbb{Z}^n \mid A'x \geq b'\}\]

\[\mathcal{Q}'' = \{x \in \mathbb{R}^n \mid A''x \geq b''\}\]
The Decomposition Principle in Integer Programming

Basic Idea: By leveraging our ability to solve the optimization/separation problem for a relaxation, we can improve the bound yielded by the LP relaxation.

\[z_{IP} = \min_{x \in \mathbb{Z}^n} \{ c^\top x \mid A'x \geq b', A''x \geq b'' \} \]
\[z_{LP} = \min_{x \in \mathbb{R}^n} \{ c^\top x \mid A'x \geq b', A''x \geq b'' \} \]
\[z_D = \min_{x \in \mathcal{P}'} \{ c^\top x \mid A''x \geq b'' \} \]

\[z_{IP} \geq z_D \geq z_{LP} \]

Assumptions:
- \(\text{OPT}(c, \mathcal{P}) \) and \(\text{SEP}(x, \mathcal{P}) \) are “hard”.
- \(\text{OPT}(c, \mathcal{P}') \) and \(\text{SEP}(x, \mathcal{P}') \) are “easy”.
- \(Q'' \) can be represented explicitly (description has polynomial size).
- \(\mathcal{P}' \) must be represented implicitly (description has exponential size).
The Decomposition Principle in Integer Programming

Basic Idea: By leveraging our ability to solve the optimization/separation problem for a relaxation, we can improve the bound yielded by the LP relaxation.

\[
\begin{align*}
 z_{IP} &= \min_{x \in \mathbb{Z}^n} \{ c^\top x \mid A'x \geq b', A''x \geq b'' \} \\
 z_{LP} &= \min_{x \in \mathbb{R}^n} \{ c^\top x \mid A'x \geq b', A''x \geq b'' \} \\
 z_D &= \min_{x \in \mathcal{P}'} \{ c^\top x \mid A''x \geq b'' \}
\end{align*}
\]

\[
 z_{IP} \geq z_D \geq z_{LP}
\]

Assumptions:

- \(\text{OPT}(c, \mathcal{P}) \) and \(\text{SEP}(x, \mathcal{P}) \) are “hard”.
- \(\text{OPT}(c, \mathcal{P}') \) and \(\text{SEP}(x, \mathcal{P}') \) are “easy”.
- \(\mathcal{Q}'' \) can be represented explicitly (description has polynomial size).
- \(\mathcal{P}' \) must be represented implicitly (description has exponential size).
Example - Traveling Salesman Problem

Classical Formulation

\[x(\delta(\{u\})) = 2 \quad \forall u \in V \]
\[x(E(S)) \leq |S| - 1 \quad \forall S \subset V, \ 3 \leq |S| \leq |V| - 1 \]
\[x_e \in \{0, 1\} \quad \forall e \in E \]
Example - Traveling Salesman Problem

Classical Formulation

\[
\begin{align*}
 x(\delta(\{u\})) &= 2 & \forall u \in V \\
 x(E(S)) &\leq |S| - 1 & \forall S \subset V, 3 \leq |S| \leq |V| - 1 \\
 x_e &\in \{0, 1\} & \forall e \in E
\end{align*}
\]

Two Relaxations

1-Tree

\[
\begin{align*}
 x(\delta(\{0\})) &= 2 \\
 x(E(V \setminus \{0\})) &= |V| - 2 \\
 x(E(S)) &\leq |S| - 1 & \forall S \subset V \setminus \{0\}, 3 \leq |S| \leq |V| - 1 \\
 x_e &\in \{0, 1\} & \forall e \in E
\end{align*}
\]
Example - Traveling Salesman Problem

Classical Formulation

\[
\begin{align*}
 x(\delta(\{u\})) &= 2 & \forall u \in V \\
 x(E(S)) &\leq |S| - 1 & \forall S \subset V, \ 3 \leq |S| \leq |V| - 1 \\
 x_e &\in \{0, 1\} & \forall e \in E
\end{align*}
\]

Two Relaxations

1-Tree

\[
\begin{align*}
 x(\delta(\{0\})) &= 2 \\
 x(E(V \setminus \{0\})) &= |V| - 2 \\
 x(E(S)) &\leq |S| - 1 & \forall S \subset V \setminus \{0\}, \ 3 \leq |S| \leq |V| - 1 \\
 x_e &\in \{0, 1\} & \forall e \in E
\end{align*}
\]

2-Matching

\[
\begin{align*}
 x(\delta(u)) &= 2 & \forall u \in V \\
 x_e &\in \{0, 1\} & \forall e \in E
\end{align*}
\]
Traditional Decomposition Methods

The Cutting Plane Method (CP) iteratively builds an outer approximation of P' by solving a cutting plane generation subproblem.
Traditional Decomposition Methods

The **Cutting Plane Method (CP)** iteratively builds an *outer* approximation of \mathcal{P}' by solving a cutting plane generation subproblem.

The **Dantzig-Wolfe Method (DW)** iteratively builds an *inner* approximation of \mathcal{P}' by solving a column generation subproblem.
Traditional Decomposition Methods

The Cutting Plane Method (CP) iteratively builds an \textit{outer} approximation of P' by solving a cutting plane generation subproblem.

The Dantzig-Wolfe Method (DW) iteratively builds an \textit{inner} approximation of P' by solving a column generation subproblem.

The Lagrangian Method (LD) iteratively solves a Lagrangian relaxation subproblem.
Common Threads

- **The LP bound** is obtained by optimizing over the intersection of two explicitly defined polyhedra.

 \[z_{LP} = \min_{x \in \mathbb{R}^n} \{ c^T x \mid x \in Q' \cap Q'' \} \]

- The decomposition bound is obtained by optimizing over the intersection of one explicitly defined polyhedron and one implicitly defined polyhedron.

 \[z_{CP} = z_{DW} = z_{LD} = z_D = \min_{x \in \mathbb{R}^n} \{ c^T x \mid x \in P' \cap Q'' \} \geq z_{LP} \]

- Traditional decomposition-based bounding methods contain two primary steps:
 - **Master Problem:** Update the primal/dual solution information.
 - **Subproblem:** Update the approximation of \(P' \): \(SEP(x, P') \) or \(OPT(c, P') \).

- Integrated decomposition methods further improve the bound by considering two implicitly defined polyhedra whose descriptions are iteratively refined.

 - Price and Cut (PC)
 - Relax and Cut (RC)
 - Decompose and Cut (DC)
Common Threads

- The **LP bound** is obtained by optimizing over the intersection of two explicitly defined polyhedra.

 $$z_{LP} = \min_{x \in \mathbb{R}^n} \{ c^T x \mid x \in Q' \cap Q'' \}$$

- The **decomposition bound** is obtained by optimizing over the intersection of one explicitly defined polyhedron and one implicitly defined polyhedron.

 $$z_{CP} = z_{DW} = z_{LD} = z_D = \min_{x \in \mathbb{R}^n} \{ c^T x \mid x \in P' \cap Q'' \} \geq z_{LP}$$

- Traditional decomposition-based bounding methods contain two primary steps
 - **Master Problem**: Update the primal/dual solution information.
 - **Subproblem**: Update the approximation of P': $SEP(x, P')$ or $OPT(c, P')$.

- Integrated decomposition methods further improve the bound by considering two implicitly defined polyhedra whose descriptions are iteratively refined.
 - Price and Cut (PC)
 - Relax and Cut (RC)
 - Decompose and Cut (DC)
The **LP bound** is obtained by optimizing over the intersection of two explicitly defined polyhedra.

\[
 z_{LP} = \min_{x \in \mathbb{R}^n} \{ c^\top x \mid x \in Q' \cap Q'' \}
\]

The **decomposition bound** is obtained by optimizing over the intersection of one explicitly defined polyhedron and one implicitly defined polyhedron.

\[
 z_{CP} = z_{DW} = z_{LD} = z_D = \min_{x \in \mathbb{R}^n} \{ c^\top x \mid x \in P' \cap Q'' \} \geq z_{LP}
\]

Traditional decomposition-based bounding methods contain two primary steps

- **Master Problem:** Update the primal/dual solution information.
- **Subproblem:** Update the approximation of \(P' \): \(SEP(x, P') \) or \(OPT(c, P') \).

Integrated decomposition methods further improve the bound by considering two implicitly defined polyhedra whose descriptions are iteratively refined.

- **Price and Cut** (PC)
- **Relax and Cut** (RC)
- **Decompose and Cut** (DC)
Price and Cut: Use DW as the bounding method. If we let $\mathcal{F}' = \mathcal{P}' \cap \mathbb{Z}^n$, then

$$z_{DW} = \min_{\lambda \in \mathbb{R}_{+}^{\mathcal{F}'}} \{ c^\top (\sum_{s \in \mathcal{F}'} s \lambda_s) : A''(\sum_{s \in \mathcal{F}'} s \lambda_s) \geq b'', \sum_{s \in \mathcal{F}'} \lambda_s = 1 \}$$

As in the cutting plane method, separate $\hat{x} = \sum_{s \in \mathcal{F}'} s \hat{\lambda}_s$ from \mathcal{P} and add cuts to $[A'', b'']$.

Advantage: Cut generation takes place in the space of the compact formulation (the original space), maintaining the structure of the column generation subproblem.
Relax and Cut: Use LD as the bounding method.

$$z_{LD} = \max_{u \in \mathbb{R}^n_+} \min_{s \in \mathcal{F}'} \{(c^T - u^T A'')s + u^T b''\}$$

- In each iteration, separate $\hat{s} \in \arg\min_{s \in \mathcal{F}'} \{(c^T - u^T A'')s + u^T b''\}$, a solution to the Lagrangian relaxation.

- Advantage: It is often much easier to separate a member of \mathcal{F}' from \mathcal{P} than an arbitrary real vector, such as \hat{x}.

![Diagram showing the process of relaxing and cutting](image-url)
Decompose and Cut: For each iteration of CPM, decompose into convex combo of e.p.’s of P'.

$$\min \{ 0\lambda : \sum_{s \in F'} s \lambda_s = \hat{x}, \sum_{s \in F'} \lambda_s = 1 \}$$

- Original idea proposed by Ralphs, later used in TSP Concorde by ABCC (Local Cuts).
- If \hat{x} lies outside P' the decomposition will fail.
 - Its dual ray (a Farkas Cut) provides a valid and violated inequality.
- The machinery for solving this already exists (=column generation).
- Often gets lucky and produces incumbent solutions to original IP.
Example - TSP

Separation of Subtour Inequalities:

\[x(E(S)) \leq |S| - 1 \]

- \(SEP(x, Subtour) \), for \(x \in \mathbb{R}^n \) can be solved in \(O(|V|^4) \) (Min-Cut)
- \(SEP(s, Subtour) \), for \(s \) a 2-matching, can be solved in \(O(|V|) \)
 - Simply determine the connected components \(C_i \), and set \(S = C_i \) for each component (each gives a violation of 1).
Example - TSP

- Separation of Subtour Inequalities:
 \[x(E(S)) \leq |S| - 1 \]

- \(SEP(x, Subtour) \), for \(x \in \mathbb{R}^n \) can be solved in \(O(|V|^4) \) (Min-Cut)

- \(SEP(s, Subtour) \), for \(s \) a 2-matching, can be solved in \(O(|V|) \)
 - Simply determine the connected components \(C_i \), and set \(S = C_i \) for each component (each gives a violation of 1).
Example - TSP

- Separation of Subtour Inequalities:
 \[x(E(S)) \leq |S| - 1 \]

- \(SEP(x, Subtour) \), for \(x \in \mathbb{R}^n \) can be solved in \(O(|V|^4) \) (Min-Cut)

- \(SEP(s, Subtour) \), for \(s \) a 2-matching, can be solved in \(O(|V|) \)
 - Simply determine the connected components \(C_i \), and set \(S = C_i \) for each component (each gives a violation of 1).
Example - TSP

- Separation of Comb Inequalities:

\[x(E(H)) + \sum_{i=1}^{k} x(E(T_i)) \leq |H| + \sum_{i=1}^{k} (|T_i| - 1) - \lceil k/2 \rceil \]

- SEP(x, Blossoms), for \(x \in \mathbb{R}^n \) can be solved in \(O(|V|^5) \) (Padberg-Rao)

- SEP(s, Blossoms), for s a 1-Tree, can be solved in \(O(|V|^2) \)

- Construct candidate handles \(H \) from BFS tree traversal and an odd (\(\geq 3 \)) set of edges with one endpoint in \(H \) and one in \(V \setminus H \) as candidate teeth (each gives a violation of \(\lceil k/2 \rceil - 1 \)).

- This can also be used as a quick heuristic to separate 1-Trees for more general comb structures, for which there is no known polynomial algorithm for separation of arbitrary vectors.
Example - TSP

- **Separation of Comb Inequalities:**

\[
x(E(H)) + \sum_{i=1}^{k} x(E(T_i)) \leq |H| + \sum_{i=1}^{k} (|T_i| - 1) - \lceil k/2 \rceil
\]

- \textit{SEP}(x, Blossoms), for \(x \in \mathbb{R}^n \) can be solved in \(O(|V|^5) \) (Padberg-Rao)

- \textit{SEP}(s, Blossoms), for \(s \) a 1-Tree, can be solved in \(O(|V|^2) \)
 - Construct candidate handles \(H \) from BFS tree traversal and an odd \((\geq 3)\) set of edges with one endpoint in \(H \) and one in \(V \setminus H \) as candidate teeth (each gives a violation of \(\lceil k/2 \rceil - 1 \)).
 - This can also be used as a quick heuristic to separate 1-Trees for more general comb structures, for which there is no known polynomial algorithm for separation of arbitrary vectors.
Example - TSP

- **Separation of Comb Inequalities:**

 \[x(E(H)) + \sum_{i=1}^{k} x(E(T_i)) \leq |H| + \sum_{i=1}^{k} (|T_i| - 1) - \left\lceil \frac{k}{2} \right\rceil \]

- **SEP\((x, Blossoms)\), for \(x \in \mathbb{R}^n\)** can be solved in \(O(|V|^5)\) (Padberg-Rao)

- **SEP\((s, Blossoms)\), for \(s\) a 1-Tree**, can be solved in \(O(|V|^2)\)

 - Construct candidate handles \(H\) from BFS tree traversal and an odd \((\geq 3)\) set of edges with one endpoint in \(H\) and one in \(V \setminus H\) as candidate teeth (each gives a violation of \(\left\lceil \frac{k}{2} \right\rceil - 1\)).

 - This can also be used as a quick heuristic to separate 1-Trees for more general comb structures, for which there is no known polynomial algorithm for separation of arbitrary vectors.
Decompose and Cut (in PC)

- Run CPM+DC for a few iterations using Farkas cuts to push point into \mathcal{P}'. Upon successful decomposition, use this as initial seed columns.
 - Jump starts master bound $z^0_{DW} = z_{CP}$.
 - Often gets "lucky" and produces incumbent solutions to original IP.
- Rather than (or in addition to) separating \hat{x}, separate each member of $\{s \in \mathcal{F}' | \hat{\lambda}_s > 0\}$.
- As with RC, much easier to separate members of \mathcal{F}' from \mathcal{P} than \hat{x}.
- RC only gives us one member of \mathcal{F}' to separate, while PC gives us a set, one of which must be violated by any inequality violated by \hat{x}.
Branching in Price and Cut

Many complex approaches possible, but using \(\hat{x} = \sum_{s \in \mathcal{F}} s \hat{\lambda}_s \) we can simply branch on variables in the original space. \(x \).

This is equivalent to branching on cuts in the reformulated space. Simply add the original column bounds into \([A'', b''] \).

This simple idea takes care of (most) of the design issues related to branching including dichotomy and dual updates in pricing.

Current Limitation: Identical subproblems are currently treated like non-identical (bad for symmetry).

- ThA08: *Review and Classification of Branching Schemes for Branch-and-price* by Francois Vanderbeck
DECOMP Framework: Motivation

DECOMP is a software framework that provides a virtual sandbox for testing and comparing various decomposition-based bounding methods.

- It’s very difficult to compare the variants discussed here in a controlled way.
- The method for separation/optimization over P' is the primary application-dependent component of any of these algorithms.
- DECOMP abstracts the common, generic elements of these methods.
 - Key: The user defines application-specific components in the space of the compact formulation.
 - The framework takes care of reformulation and implementation for all variants described here.
DECOMP Framework: Motivation

DECOMP is a software framework that provides a virtual sandbox for testing and comparing various decomposition-based bounding methods.

- It’s very difficult to compare the variants discussed here in a controlled way.
- The method for separation/optimization over P' is the primary application-dependent component of any of these algorithms.

DECOMP abstracts the common, generic elements of these methods.

- Key: The user defines application-specific components in the space of the compact formulation.
- The framework takes care of reformulation and implementation for all variants described here.
DECOMP is a software framework that provides a virtual sandbox for testing and comparing various decomposition-based bounding methods.

- It’s very difficult to compare the variants discussed here in a controlled way.
- The method for separation/optimization over P' is the primary application-dependent component of any of these algorithms.
- DECOMP abstracts the common, generic elements of these methods.
 - **Key:** The user defines application-specific components in the space of the compact formulation.
 - The framework takes care of reformulation and implementation for all variants described here.
DECOMP Framework: Implementation

COmputational **IN**frastructure for **O**perations **R**esearch

- **DECOMP** was built around data structures and interfaces provided by COIN-OR.
- The **DECOMP** framework, written in C++, is accessed through two user interfaces:
 - Applications Interface: DecompApp
 - Algorithms Interface: DecompAlgo

- **DECOMP** provides the bounding method for branch and bound.
- **ALPS** (Abstract Library for Parallel Search) provides the framework for parallel tree search.
 - AlpsDecompModel : public AlpsModel
 - a wrapper class that calls (data access) methods from DecompApp
 - AlpsDecompTreeNode : public AlpsTreeNode
 - a wrapper class that calls (algorithmic) methods from DecompAlgo
DECOMP Framework: Implementation

COmputational INfrastructure for OPerations Research

- **DECOMP** was built around data structures and interfaces provided by COIN-OR.
- The **DECOMP** framework, written in C++, is accessed through two user interfaces:
 - **Applications Interface**: DecompApp
 - **Algorithms Interface**: DecompAlgo
- **DECOMP** provides the bounding method for branch and bound.
- **ALPS** (Abstract Library for Parallel Search) provides the framework for parallel tree search.
 - **AlpsDecompModel**: public AlpsModel
 - a wrapper class that calls (data access) methods from DecompApp
 - **AlpsDecompTreeNode**: public AlpsTreeNode
 - a wrapper class that calls (algorithmic) methods from DecompAlgo
DECOMP Framework: Implementation

COmputational INfrastructure for OPerations Research

- **DECOMP** was built around data structures and interfaces provided by COIN-OR.
- The **DECOMP** framework, written in C++, is accessed through two user interfaces:
 - **Applications Interface**: DecompApp
 - **Algorithms Interface**: DecompAlgo
- **DECOMP** provides the bounding method for branch and bound.
- **ALPS** (Abstract Library for Parallel Search) provides the framework for parallel tree search.
 - **AlpsDecompModel**: public AlpsModel
 - a wrapper class that calls (data access) methods from DecompApp
 - **AlpsDecompTreeNode**: public AlpsTreeNode
 - a wrapper class that calls (algorithmic) methods from DecompAlgo
DECOMP Features

- One interface to all default algorithms: CP/DC, DW, LD, PC, RC.
- Automatic reformulation allows users to deal with vars and cons in the original space.
- Built on top of the OSI interface, so easy to swap solvers (simplex to interior point).
- Can utilize CGL cuts in all algorithms (separate from original space).
 - Design question: What about LP-based cuts (Gomory, L&P)?
 - General design of COIN/CGL needs to be reconsidered? Should not depend on a solver.
- Column generation based on *multiple algorithms* can be easily defined and employed.
- Can derive bounds based on *multiple model/algorithm* combinations.
- Provides default (naive) branching rules in the original space.
- Active LP compression, variable and cut pool management.
- Flexible parameter interface: command line, param file, direct call overrides.
- Threaded oracle for block angular case.
 - Design issue with current COIN/OsiCpx.
DECOMP Features

- One interface to all default algorithms: CP/DC, DW, LD, PC, RC.
- Automatic reformulation allows users to deal with vars and cons in the original space.
- Built on top of the OSI interface, so easy to swap solvers (simplex to interior point).
- Can utilize CGL cuts in all algorithms (separate from original space).
 - Design question: What about LP-based cuts (Gomory, L&P)?
 - General design of COIN/CGL needs to be reconsidered? Should not depend on a solver.
- Column generation based on multiple algorithms can be easily defined and employed.
- Can derive bounds based on multiple model/algorithm combinations.
- Provides default (naive) branching rules in the original space.
- Active LP compression, variable and cut pool management.
- Flexible parameter interface: command line, param file, direct call overrides.
- Threaded oracle for block angular case.
 - Design issue with current COIN/OsiCpx.
DECOMP Features

- One interface to all default algorithms: CP/DC, DW, LD, PC, RC.
- **Automatic reformulation** allows users to deal with vars and cons in the original space.

- Built on top of the OSI interface, so easy to swap solvers (simplex to interior point).
- Can utilize CGL cuts in all algorithms (separate from original space).
 - Design question: What about LP-based cuts (Gomory, L&P)?
 - General design of COIN/CGL needs to be reconsidered? Should not depend on a solver.
- Column generation based on *multiple algorithms* can be easily defined and employed.
- Can derive bounds based on *multiple model/algorithm* combinations.
- Provides default (naive) branching rules in the original space.
- Active LP compression, variable and cut pool management.
- Flexible parameter interface: command line, param file, direct call overrides.
- Threaded oracle for block angular case.
- Design issue with current COIN/OsiCpx.
DECOMP Features

- One interface to all default algorithms: CP/DC, DW, LD, PC, RC.
- **Automatic reformulation** allows users to deal with vars and cons in the original space.
- Built on top of the OSI interface, so easy to swap solvers (simplex to interior point).
- Can utilize CGL cuts in all algorithms (separate from original space).
 - Design question: What about LP-based cuts (Gomory, L&P)?
 - General design of COIN/CGL needs to be reconsidered? Should not depend on a solver.
- Column generation based on *multiple algorithms* can be easily defined and employed.
- Can derive bounds based on *multiple model/algorithm* combinations.
- Provides default (naive) branching rules in the original space.
- Active LP compression, variable and cut pool management.
- Flexible parameter interface: command line, param file, direct call overrides.
- Threaded oracle for block angular case.
 - Design issue with current COIN/OsiCpx.
DECOMP Features

- One interface to all default algorithms: CP/DC, DW, LD, PC, RC.
- **Automatic reformulation** allows users to deal with vars and cons in the original space.
- Built on top of the OSI interface, so easy to swap solvers (simplex to interior point).
- Can utilize CGL cuts in all algorithms (separate from original space).
 - Design question: What about LP-based cuts (Gomory, L&P)?
 - General design of COIN/CGL needs to be reconsidered? Should not depend on a solver.
- Column generation based on *multiple algorithms* can be easily defined and employed.
- Can derive bounds based on *multiple model/algorithm* combinations.
- Provides default (naive) branching rules in the original space.
- Active LP compression, variable and cut pool management.
- Flexible parameter interface: command line, param file, direct call overrides.
- Threaded oracle for block angular case.
 - Design issue with current COIN/OsiCpx.
DECOMP Features

- One interface to all default algorithms: CP/DC, DW, LD, PC, RC.
- Automatic reformulation allows users to deal with vars and cons in the original space.
- Built on top of the OSI interface, so easy to swap solvers (simplex to interior point).
- Can utilize CGL cuts in all algorithms (separate from original space).
 - Design question: What about LP-based cuts (Gomory, L&P)?
 - General design of COIN/CGL needs to be reconsidered? Should not depend on a solver.
- Column generation based on multiple algorithms can be easily defined and employed.
 - Can derive bounds based on multiple model/algorithm combinations.
 - Provides default (naive) branching rules in the original space.
 - Active LP compression, variable and cut pool management.
 - Flexible parameter interface: command line, param file, direct call overrides.
 - Threaded oracle for block angular case.
 - Design issue with current COIN/OsiCpx.
DECOMP Features

- One interface to all default algorithms: CP/DC, DW, LD, PC, RC.
- **Automatic reformulation** allows users to deal with vars and cons in the original space.
- Built on top of the OSI interface, so easy to swap solvers (simplex to interior point).
- Can utilize CGL cuts in all algorithms (separate from original space).
 - Design question: What about LP-based cuts (Gomory, L&P)?
 - General design of COIN/CGL needs to be reconsidered? Should not depend on a solver.
- Column generation based on *multiple algorithms* can be easily defined and employed.
- Can derive bounds based on *multiple model/algorithm* combinations.
 - Provides default (naive) branching rules in the original space.
 - Active LP compression, variable and cut pool management.
 - Flexible parameter interface: command line, param file, direct call overrides.
 - Threaded oracle for block angular case.
 - Design issue with current COIN/OsiCpx.
DECOMP Features

- One interface to all default algorithms: CP/DC, DW, LD, PC, RC.
- Automatic reformulation allows users to deal with vars and cons in the original space.
- Built on top of the OSI interface, so easy to swap solvers (simplex to interior point).
- Can utilize CGL cuts in all algorithms (separate from original space).
 - Design question: What about LP-based cuts (Gomory, L&P)?
 - General design of COIN/CGL needs to be reconsidered? Should not depend on a solver.
- Column generation based on multiple algorithms can be easily defined and employed.
- Can derive bounds based on multiple model/algorithm combinations.
- Provides default (naive) branching rules in the original space.
 - Active LP compression, variable and cut pool management.
 - Flexible parameter interface: command line, param file, direct call overrides.
 - Threaded oracle for block angular case.
 - Design issue with current COIN/OsiCpx.
DECOMP Features

- One interface to all default algorithms: CP/DC, DW, LD, PC, RC.
- **Automatic reformulation** allows users to deal with vars and cons in the original space.
- Built on top of the OSI interface, so easy to swap solvers (simplex to interior point).
- Can utilize CGL cuts in all algorithms (separate from original space).
 - Design question: What about LP-based cuts (Gomory, L&P)?
 - General design of COIN/CGL needs to be reconsidered? Should not depend on a solver.
- Column generation based on multiple algorithms can be easily defined and employed.
- Can derive bounds based on multiple model/algorithm combinations.
- Provides default (naive) branching rules in the original space.
- Active LP compression, variable and cut pool management.
 - Flexible parameter interface: command line, param file, direct call overrides.
 - Threaded oracle for block angular case.
 - Design issue with current COIN/OsiCpx.
One interface to all default algorithms: CP/DC, DW, LD, PC, RC.

Automatic reformulation allows users to deal with vars and cons in the original space.

Built on top of the OSI interface, so easy to swap solvers (simplex to interior point).

Can utilize CGL cuts in all algorithms (separate from original space).
 - Design question: What about LP-based cuts (Gomory, L&P)?
 - General design of COIN/CGL needs to be reconsidered? Should not depend on a solver.

Column generation based on multiple algorithms can be easily defined and employed.

Can derive bounds based on multiple model/algorithm combinations.

Provides default (naive) branching rules in the original space.

Active LP compression, variable and cut pool management.

Flexible parameter interface: command line, param file, direct call overrides.

Threaded oracle for block angular case.

Design issue with current COIN/OsiCpx.
DECOMP Features

- One interface to all default algorithms: CP/DC, DW, LD, PC, RC.
- Automatic reformulation allows users to deal with vars and cons in the original space.
- Built on top of the OSI interface, so easy to swap solvers (simplex to interior point).
- Can utilize CGL cuts in all algorithms (separate from original space).
 - Design question: What about LP-based cuts (Gomory, L&P)?
 - General design of COIN/CGL needs to be reconsidered? Should not depend on a solver.
- Column generation based on multiple algorithms can be easily defined and employed.
- Can derive bounds based on multiple model/algorithm combinations.
- Provides default (naive) branching rules in the original space.
- Active LP compression, variable and cut pool management.
- Flexible parameter interface: command line, param file, direct call overrides.
- Threaded oracle for block angular case.
 - Design issue with current COIN/OsiCpx.
The base class **DecompApp** provides an interface for the user to define the application-specific components of their algorithm.

In order to develop an application, the user must derive the following methods/objects.

- **DecompApp::APPcreateModel()**: Define \([A'', b'']\) and \([A', b']\) (optional).
 - **TSP 1-Tree**: \([A'', b'']\) define the 2-matching constraints.
 - **TSP 2-Match**: \([A'', b'']\) define trivial subtour constraints.
- **DecompApp::isUserFeasible()**: Does \(x^*\) define a feasible solution?
 - **TSP**: do we have a feasible tour?
- **DecompApp::APPsolveRelaxed()**: Provide a subroutine for \(OPT(c, P')\).
 - This is optional as well, if \([A', b']\) is defined (it will call the built in IP solver, currently CBC).
 - **TSP 1-Tree**: provide a solver for 1-tree.
 - **TSP 2-Match**: provide a solver for 2-matching.

All other methods have appropriate defaults but are **virtual** and may be overridden.

- **DecompApp::APPheuristics()**
- **DecompApp::generateInitVars()**
- **DecompApp::generateCuts()**
- ...
The base class `DecompApp` provides an interface for the user to define the application-specific components of their algorithm.

In order to develop an application, the user must derive the following methods/objects.

- **DecompApp::APPcreateModel()**: Define $[A'', b'']$ and $[A', b']$ (optional).
 - TSP 1-Tree: $[A'', b'']$ define the 2-matching constraints.
 - TSP 2-Match: $[A'', b'']$ define trivial subtour constraints.

- **DecompApp::isUserFeasible()**: Does x^* define a feasible solution?
 - TSP: do we have a feasible tour?

- **DecompApp::APPsolveRelaxed()**: Provide a subroutine for $OPT(c, P')$.
 - This is optional as well, if $[A', b']$ is defined (it will call the built-in IP solver, currently CBC).
 - TSP 1-Tree: provide a solver for 1-tree.
 - TSP 2-Match: provide a solver for 2-matching.

- All other methods have appropriate defaults but are `virtual` and may be overridden.
 - `DecompApp::APPheuristics()`
 - `DecompApp::generateInitVars()`
 - `DecompApp::generateCuts()`
 - `...`
The base class `DecompApp` provides an interface for the user to define the application-specific components of their algorithm.

In order to develop an application, the user must derive the following methods/objects.

- **DecompApp::APPcreateModel().** Define $[A'', b'']$ and $[A', b']$ (optional).
 - TSP 1-Tree: $[A'', b'']$ define the 2-matching constraints.
 - TSP 2-Match: $[A'', b'']$ define trivial subtour constraints.

- **DecompApp::isUserFeasible().** Does x^* define a feasible solution?
 - TSP: do we have a feasible tour?

- **DecompApp::APPsolveRelaxed().** Provide a subroutine for $OPT(c, P')$.
 - This is optional as well, if $[A', b']$ is defined (it will call the built in IP solver, currently CBC).
 - TSP 1-Tree: provide a solver for 1-tree.
 - TSP 2-Match: provide a solver for 2-matching.

All other methods have appropriate defaults but are virtual and may be overridden.

- `DecompApp::APPheuristics()`
- `DecompApp::generateInitVars()`
- `DecompApp::generateCuts()`
- ...
The base class **DecompApp** provides an interface for the user to define the application-specific components of their algorithm.

In order to develop an application, the user must derive the following methods/objects.

- **DecompApp::APPcreateModel()**. Define \([A''', b''']\) and \([A', b']\) (optional).
 - TSP 1-Tree: \([A''', b''']\) define the 2-matching constraints.
 - TSP 2-Match: \([A''', b''']\) define trivial subtour constraints.

- **DecompApp::isUserFeasible()**. Does \(x^*\) define a feasible solution?
 - TSP: do we have a feasible tour?

- **DecompApp::APPsolveRelaxed()**. Provide a subroutine for \(OPT(c, P')\).
 - This is optional as well, if \([A', b']\) is defined (it will call the built in IP solver, currently CBC).
 - TSP 1-Tree: provide a solver for 1-tree.
 - TSP 2-Match: provide a solver for 2-matching.

All other methods have appropriate defaults but are **virtual** and may be overridden.

- **DecompApp::APPheuristics()**
- **DecompApp::generateInitVars()**
- **DecompApp::generateCuts()**
- ...
The base class **DecompApp** provides an interface for the user to define the application-specific components of their algorithm.

In order to develop an application, the user must derive the following methods/objects.

- **DecompApp::APPcreateModel().** Define \([A'', b'']\) and \([A', b']\) (optional).
 - TSP 1-Tree: \([A'', b'']\) define the 2-matching constraints.
 - TSP 2-Match: \([A'', b'']\) define trivial subtour constraints.

- **DecompApp::isUserFeasible().** Does \(x^*\) define a feasible solution?
 - TSP: do we have a feasible tour?

- **DecompApp::APPsolveRelaxed().** Provide a subroutine for \(\text{OPT}(c, \mathcal{P}')\).
 - This is optional as well, if \([A', b']\) is defined (it will call the built-in IP solver, currently CBC).
 - TSP 1-Tree: provide a solver for 1-tree.
 - TSP 2-Match: provide a solver for 2-matching.

All other methods have appropriate defaults but are **virtual** and may be overridden.

- **DecompApp::APPheuristics()**
- **DecompApp::generateInitVars()**
- **DecompApp::generateCuts()**
- ...
The base class `DecompAlgo` provides the shell (init / master / subproblem / update).

- Each of the methods described have derived default implementations `DecompAlgoX`:
 - public `DecompAlgo` which are accessible by any application class, allowing full flexibility.
- New, hybrid or extended methods can be easily derived by overriding the various subroutines, which are called from the base class. For example,
 - Alternative methods for solving the master LP in DW, such as interior point methods.
 - Add stabilization to the dual updates in LD, as in bundle methods.
 - For LD, replace subgradient with Volume, providing an approximate primal solution.
 - Hybrid methods like using LD to initialize the columns of the DW master.
 - During PC, adding cuts to either master and subproblem.
 - ...

Diagram:

```
  DecompAlgo
     / \           / \          / \        / \       / \     / \    / \  
    DecompAlgoC DecomAlgoPC DecompAlgoRC DecompAlgoUSER
```
The base class `DecompAlgo` provides the shell (init / master / subproblem / update).

Each of the methods described have derived default implementations `DecompAlgoX`:

- `public DecompAlgo` which are accessible by any application class, allowing full flexibility.

New, hybrid or extended methods can be easily derived by overriding the various subroutines, which are called from the base class. For example,

- Alternative methods for solving the master LP in DW, such as interior point methods.
- Add stabilization to the dual updates in LD, as in bundle methods.
- For LD, replace subgradient with Volume, providing an approximate primal solution.
- Hybrid methods like using LD to initialize the columns of the DW master.
- During PC, adding cuts to either master and subproblem.
- ...

![Diagram of the DECOMP framework showing the hierarchy of class definitions](image)

Galati, Ralphs

A Framework for Decomposition in IP
The base class `DecompAlgo` provides the shell (init / master / subproblem / update).

Each of the methods described have derived default implementations `DecompAlgoX`:

```java
public DecompAlgo
```
which are accessible by any application class, allowing full flexibility.

New, hybrid or extended methods can be easily derived by overriding the various subroutines, which are called from the base class. For example,

- Alternative methods for solving the master LP in DW, such as **interior point methods**.
- Add stabilization to the dual updates in LD, as in **bundle methods**.
- For LD, replace subgradient with **Volume**, providing an approximate primal solution.
- Hybrid methods like using LD to initialize the columns of the DW master.
- During PC, adding cuts to either master and subproblem.

...
TSP Main

```c
int main(int argc, char ** argv)
{
    // create the utility class for parsing parameters
    UtilParameters utilParam(argc, argv);

    // create the user application (a DecompApp)
    TSP_DecompApp tsp(utilParam);
    tsp.createModel();

    // create the algorithm(s) (a DecompAlgo)
    DecompAlgoC * cut = new DecompAlgoC(&tsp, &utilParam);
    DecompAlgoPC * pcOneTree = new DecompAlgoPC(&tsp, &utilParam,
                                               TSP_DecompApp::MODEL_ONETREE);
    DecompAlgoPC * pcTwoMatch = new DecompAlgoPC(&tsp, &utilParam,
                                               TSP_DecompApp::MODEL_TWOMATCH);
    DecompAlgoRC * rcOneTree = new DecompAlgoRC(&tsp, &utilParam,
                                               TSP_DecompApp::MODEL_ONETREE);
    DecompAlgoRC * rcTwoMatch = new DecompAlgoRC(&tsp, &utilParam,
                                               TSP_DecompApp::MODEL_TWOMATCH);

    // create the driver AlpsDecomp model
    AlpsDecompModel alpsModel(utilParam);

    // install the algorithms
    // alpsModel.addDecompAlgo(cut);
    alpsModel.addDecompAlgo(pcOneTree);

    // solve
    alpsModel.solve();
}
```
Application - ATM Cash Management Problem - MINLP Formulation

- Simple looking nonconvex quadratic integer NLP
 - "it is not interesting for MINLP - it is too easy"

- Linearize the absolute value, add binaries for count constraints.

- So far, no MINLP solvers seem to be able to solve this (several die with numerical failures).

\[
\begin{align*}
\min & \quad \sum_{a \in A, d \in D} |f_{ad}| \\
\text{s.t.} & \quad c^{x} x_{a} + c^{y} y_{a} + c^{xy} x_{a} y_{a} + c^{u} u_{a} + c_{ad} = f_{ad} \quad \forall a \in A, d \in D \\
& \quad \sum_{a \in A} f_{ad} \leq B_{d} \quad \forall d \in D \\
& \quad |\{d \in D \mid f_{ad} < 0\}| \leq K_{a} \quad \forall a \in A \\
& \quad x_{a}, y_{a} \in [0, 1] \quad \forall a \in A \\
& \quad u_{a} \geq 0 \quad \forall a \in A \\
& \quad f_{ad} \in [0, w_{ad}] \quad \forall a \in A, d \in D
\end{align*}
\]
Discretization of x domain \{0, 0.1, 0.2, ..., 1.0\}.

Linearization of product of binary and continuous, and absolute value.

Binaries for counting constraints.

\[
\begin{align*}
\min & \sum_{a \in A, d \in D} f^+_{ad} + f^-_{ad} \\
\text{s.t.} & \sum_{t \in T} c^x_{ad} x_{at} + c^y_{ad} y_{at} + c^{xy}_{ad} \sum_{t \in T} c_t z_{at} + c^u_{ad} u_{at} + c_{ad} = f^+_{ad} - f^-_{ad} & \forall a \in A, d \in D \\
& \sum_{t \in T} x_{at} \leq 1 & \forall a \in A \\
& z_{at} \leq x_{at} & \forall a \in A, t \in T \\
& z_{at} \geq y_{at} & \forall a \in A, t \in T \\
& z_{at} \geq x_{at} + y_{at} - 1 & \forall a \in A, t \in T \\
& f^-_{ad} \leq w_{ad} v_{ad} & \forall a \in A, d \in D \\
& \sum_{a \in A} f^+_{ad} - f^-_{ad} \leq B_d & \forall d \in D \\
& \sum_{d \in D} v_{ad} \leq K_a & \forall a \in A
\end{align*}
\]
Application - ATM Cash Management Problem - MILP Approx Formulation

\begin{align*}
x_{at} & \in \{0, 1\} & \forall a \in A, t \in T \\
z_{at} & \in [0, 1] & \forall a \in A, t \in T \\
v_{ad} & \in \{0, 1\} & \forall a \in A, d \in D \\
y_a & \in [0, 1] & \forall a \in A \\
u_a & \geq 0 & \forall a \in A \\
f_{ad}^+, f_{ad}^- & \in [0, w_{ad}] & \forall a \in A, d \in D
\end{align*}

- The MILP formulation has a natural block angular structure.
- Master constraints are just the budget constraint.
- Subproblem constraints (the rest) - one block for each ATM.
Traditional Methods
Integrated Methods
Decompose and Cut
DECOMP Framework

ATM Cash Management Problem
Work in Progress

Application - ATM Cash Management Problem - in DECOMP

- Extremely easy to define this problem in **DECOMP**.
 - `DecompApp::APPcreateModel`. Just define master constraints and blocks.
 - Master constraints (budget constraints).
 - Subproblem constraints (*the rest*) - one for each ATM.

- Data setup: 648 lines of code.

  ```
  > wc -l ATM_Instance.*
  491 ATM_Instance.cpp
  157 ATM_Instance.h
  648 total
  ```

- Model setup: 1221 lines of code (407 lines are comments).

  ```
  > wc -l ATM_Decomps.*
  951 ATM_Decomps.cpp
  197 ATM_Decomps.h
  73 ATM_DecompsParam.h
  1221 total
  ```

  ```
  > grep "//" ATM_Decomps.* | wc -l
  407
  ```

- **Nothing else** is necessary to solve this model in **DECOMP**!
Computational Results - ATM Cash Management Problem

Lehigh University (altair1): 8 quad-core, Intel Xeon E5410 2.33Ghz, 64-bit, 128GB, 6MB Cache

Table: One hour time limit

| $|A|$ | $|D|$ | Time | | | Gap | | |
|---|---|---|---|---|---|---|---|---|---|
| | | | CPX11 | D-1 | D-8 | CPX11 | D-1 | D-8 | |
| 5 | 25 | 1 | 127 | 45 | OPT | OPT | OPT | |
| 5 | 50 | 3600 | 3600 | 3356 | 5.9% | 0.57% | OPT | |
| 10 | 50 | 3600 | 3600 | 3600 | 0.8% | 0.07% | 0.01% | |
| 10 | 100 | 3600 | 3600 | 3253 | ∞ | 0.67% | OPT | |
| 20 | 100 | 3600 | 3423 | 1554 | ∞ | OPT | OPT | |

Table: Time and Number of Nodes to 10% Gap

| $|A|$ | $|D|$ | TimeTo10 | | | NodeTo10 | | |
|---|---|---|---|---|---|---|---|---|---|
| | | | CPX11 | D-1 | D-8 | CPX11 | D-1 | | |
| 5 | 25 | 1 | 22 | 7 | 120 | 1 | |
| 5 | 50 | 2,040 | 127 | 56 | 361,305 | 21 | |
| 10 | 50 | 130 | 53 | 15 | 31,100 | 1 | |
| 10 | 100 | no-sol | 615 | 213 | no-sol | 1 | |
| 20 | 100 | no-sol | 1,156 | 416 | no-sol | 1 | |
Current Computational Research for Price and Cut

- Can we implement Gomory cuts in Price and Cut?
 - Similar to Interior Point crossover to Simplex, we can crossover from \(\hat{x} \) to a feasible basis, load that into the solver and generate tableaux cuts.
 - Will the design of OSI and CGL work like this?

- Decomp and Cut is expensive but has many potential benefits. What is the tradeoff?
 - Generation of initial columns to start Price and Cut. Gives \(z_{DW}^0 = z_{CP} \).
 - If the initial \(\hat{x} \) is not in \(P' \), Farkas cuts can move the point to the interior.
 - Along the way, we might generate incumbents for \(z_{IP} \).

- Nested pricing.
 - Choose an oracle with \(P' \) and a restriction \(\hat{P}' \subset P' \).
 - Price exactly (for bounds) on \(P' \), but generate columns heuristically on \(\hat{P}' \).

- Feasibility pump for Price and Cut.
 - Given \(s \in F' \), solve an auxiliary MILP feasible to \(P' \) minimizing the \(L1 \) norm between \(s \) and \(A'' \).

- For block angular case, solve the master (small model) as an IP at end of each B&B node.
 - Cheap, often produces incumbents.

- Built on top of ALPS - so parallelization of the B&B should be easy to try.
Current Computational Research for Price and Cut

Can we implement Gomory cuts in Price and Cut?
- Similar to Interior Point crossover to Simplex, we can crossover from \hat{x} to a feasible basis, load that into the solver and generate tableaux cuts.
- Will the design of OSI and CGL work like this?

Decomp and Cut is expensive but has many potential benefits. What is the tradeoff?
- Generation of initial columns to start Price and Cut. Gives $z_{DW}^0 = z_{CP}$.
- If the initial \hat{x} is not in P', Farkas cuts can move the point to the interior.
- Along the way, we might generate incumbents for z_{IP}.

Nested pricing.
- Choose an oracle with P' and a restriction $\check{P}' \subset P'$.
- Price exactly (for bounds) on P', but generate columns heuristically on \check{P}'.

Feasibility pump for Price and Cut.
- Given $s \in F'$, solve an auxiliary MILP feasible to P' minimizing the L_1 norm between s and A''.
- For block angular case, solve the master (small model) as an IP at end of each B&B node.
- Cheap, often produces incumbents.

Built on top of ALPS - so parallelization of the B&B should be easy to try.
Current Computational Research for Price and Cut

- Can we implement Gomory cuts in Price and Cut?
 - Similar to Interior Point crossover to Simplex, we can crossover from \(\hat{x} \) to a feasible basis, load that into the solver and generate tableaux cuts.
 - Will the design of OSI and CGL work like this?

- Decomp and Cut is expensive but has many potential benefits. What is the tradeoff?
 - Generation of initial columns to start Price and Cut. Gives \(z_{DW}^0 = z_{CP} \).
 - If the initial \(\hat{x} \) is not in \(P' \), Farkas cuts can move the point to the interior.
 - Along the way, we might generate incumbents for \(z_{IP} \).

- Nested pricing.
 - Choose an oracle with \(P' \) and a restriction \(\hat{P}' \subset P' \).
 - Price exactly (for bounds) on \(P' \), but generate columns heuristically on \(\hat{P}' \).

- Feasibility pump for Price and Cut.
 - Given \(s \in F' \), solve an auxiliary MILP feasible to \(P' \) minimizing the \(L1 \) norm between \(s \) and \(A'' \).
 - For block angular case, solve the master (small model) as an IP at end of each B&B node.
 - Cheap, often produces incumbents.
 - Built on top of ALPS - so parallelization of the B&B should be easy to try.
Current Computational Research for Price and Cut

- Can we implement Gomory cuts in Price and Cut?
 - Similar to Interior Point crossover to Simplex, we can crossover from \(\hat{x} \) to a feasible basis, load that into the solver and generate tableaux cuts.
 - Will the design of OSI and CGL work like this?

- Decom and Cut is expensive but has many potential benefits. What is the tradeoff?
 - Generation of initial columns to start Price and Cut. Gives \(z_0^{DW} = z_{CP} \).
 - If the initial \(\hat{x} \) is not in \(P' \), Farkas cuts can move the point to the interior.
 - Along the way, we might generate incumbents for \(z_{IP} \).

- Nested pricing.
 - Choose an oracle with \(P' \) and a restriction \(\hat{P}' \subseteq P' \).
 - Price exactly (for bounds) on \(P' \), but generate columns heuristically on \(\hat{P}' \).

- Feasibility pump for Price and Cut.
 - Given \(s \in F' \), solve an auxiliary MILP feasible to \(P' \) minimizing the \(L_1 \) norm between \(s \) and \(A'' \).

- For block angular case, solve the master (small model) as an IP at end of each B&B node.
 - Cheap, often produces incumbents.

- Built on top of ALPS - so parallelization of the B&B should be easy to try.
Current Computational Research for Price and Cut

- Can we implement Gomory cuts in Price and Cut?
 - Similar to Interior Point crossover to Simplex, we can crossover from \hat{x} to a feasible basis, load that into the solver and generate tableaux cuts.
 - Will the design of OSI and CGL work like this?

- Decomp and Cut is expensive but has many potential benefits. What is the tradeoff?
 - Generation of initial columns to start Price and Cut. Gives $z_{DW}^0 = z_{CP}$.
 - If the initial \hat{x} is not in P', Farkas cuts can move the point to the interior.
 - Along the way, we might generate incumbents for z_{IP}.

- Nested pricing.
 - Choose an oracle with P' and a restriction $\hat{P}' \subseteq P'$.
 - Price exactly (for bounds) on P', but generate columns heuristically on \hat{P}'.

- *Feasibility pump* for Price and Cut.
 - Given $s \in F'$, solve an auxiliary MILP feasible to P' minimizing the $L1$ norm between s and A''.
 - For block angular case, solve the master (small model) as an IP at end of each B&B node.
 - Cheap, often produces incumbents.

- Built on top of ALPS - so parallelization of the B&B should be easy to try.
Current Computational Research for Price and Cut

- Can we implement Gomory cuts in Price and Cut?
 - Similar to Interior Point crossover to Simplex, we can crossover from \hat{x} to a feasible basis, load that into the solver and generate tableaux cuts.
 - Will the design of OSI and CGL work like this?

- Decomp and Cut is expensive but has many potential benefits. What is the tradeoff?
 - Generation of initial columns to start Price and Cut. Gives $z_{DW}^0 = z_{CP}$.
 - If the initial \hat{x} is not in \mathcal{P}', Farkas cuts can move the point to the interior.
 - Along the way, we might generate incumbents for z_{IP}.

- Nested pricing.
 - Choose an oracle with \mathcal{P}' and a restriction $\hat{\mathcal{P}}' \subset \mathcal{P}'$.
 - Price exactly (for bounds) on \mathcal{P}', but generate columns heuristically on $\hat{\mathcal{P}}'$.

- Feasibility pump for Price and Cut.
 - Given $s \in \mathcal{F}'$, solve an auxiliary MILP feasible to \mathcal{P}' minimizing the $L1$ norm between s and A''.

- For block angular case, solve the master (small model) as an IP at end of each B&B node.
 - Cheap, often produces incumbents.

- Built on top of ALPS - so parallelization of the B&B should be easy to try.
Summary

- Traditional Decomposition Methods approximate P as $P' \cap Q''$.
 - $P' \supset P$ may have a large description.

- Integrated Decomposition Methods approximate P as $P_I \cap P_O$.
 - Both $P_I \subset P'$ and $P_O \supset P$ may have a large description.

- DECOMP provides an easy-to-use framework for comparing and developing various decomposition-based bounding methods.
 - The user only needs to define the components based on the compact formulation (irrespective of algorithm).

- The interface to ALPS allows us to investigate large-scale problems on distributed networks.

- The code is open-source, currently released under CPL and will soon (Sep or Oct '09) be available through the COIN-OR project repository www.coin-or.org.

- Related publications:
Summary

- Traditional Decomposition Methods approximate \mathcal{P} as $\mathcal{P}' \cap Q''$.
 - $\mathcal{P}' \supset \mathcal{P}$ may have a large description.

- Integrated Decomposition Methods approximate \mathcal{P} as $\mathcal{P}_I \cap \mathcal{P}_O$.
 - Both $\mathcal{P}_I \subset \mathcal{P}'$ and $\mathcal{P}_O \supset \mathcal{P}$ may have a large description.

- **DECOMP** provides an easy-to-use framework for comparing and developing various decomposition-based bounding methods.
 - The user only needs to define the components based on the compact formulation (irrespective of algorithm).

- The interface to ALPS allows us to investigate large-scale problems on distributed networks.

- The code is open-source, currently released under CPL and will soon (Sep or Oct '09) be available through the COIN-OR project repository www.coin-or.org.

- Related publications:
Summary

- Traditional Decomposition Methods approximate \mathcal{P} as $\mathcal{P}' \cap Q''$.
 - $\mathcal{P}' \supset \mathcal{P}$ may have a *large* description.

- Integrated Decomposition Methods approximate \mathcal{P} as $\mathcal{P}_I \cap \mathcal{P}_O$.
 - Both $\mathcal{P}_I \subset \mathcal{P}'$ and $\mathcal{P}_O \supset \mathcal{P}$ may have a *large* description.

- **DECOMP** provides an easy-to-use framework for comparing and developing various decomposition-based bounding methods.
 - The user only needs to define the components based on the compact formulation (irrespective of algorithm).

- The interface to **ALPS** allows us to investigate large-scale problems on distributed networks.

- The code is open-source, currently released under CPL and will soon (Sep or Oct '09) be available through the **COIN-OR** project repository www.coin-or.org.

- Related publications:
Traditionai Methods approximate P as $P' \cap Q''$.

- $P' \supset P$ may have a large description.

Integrated Methods approximate P as $P_I \cap P_O$.

- Both $P_I \subset P'$ and $P_O \supset P$ may have a large description.

DECOMP provides an easy-to-use framework for comparing and developing various decomposition-based bounding methods.

- The user only needs to define the components based on the compact formulation (irrespective of algorithm).

The interface to **ALPS** allows us to investigate large-scale problems on distributed networks.

The code is open-source, currently released under CPL and will soon (Sep or Oct '09) be available through the **COIN-OR** project repository www.coin-or.org.

Related publications:

Summary

Traditional Decomposition Methods approximate \mathcal{P} as $\mathcal{P}' \cap \mathcal{Q}''$.
- $\mathcal{P}' \supset \mathcal{P}$ may have a large description.

Integrated Decomposition Methods approximate \mathcal{P} as $\mathcal{P}_I \cap \mathcal{P}_O$.
- Both $\mathcal{P}_I \subset \mathcal{P}'$ and $\mathcal{P}_O \supset \mathcal{P}$ may have a large description.

DECOMP provides an easy-to-use framework for comparing and developing various decomposition-based bounding methods.
- The user only needs to define the components based on the compact formulation (irrespective of algorithm).

The interface to **ALPS** allows us to investigate large-scale problems on distributed networks.

The code is open-source, currently released under CPL and will soon (Sep or Oct '09) be available through the **COIN-OR** project repository www.coin-or.org.

Related publications: