
The Uncapacitated Facility Location Problem
Developing a Solver

Additional Resources

Using COIN-OR to Solve the Uncapacitated Facility Location
Problem

Ted Ralphs1 Matthew Saltzman 2 Matthew Galati 3

1COR@L Lab
Department of Industrial and Systems Engineering

Lehigh University

2Department of Mathematical Sciences
Clemson University

3Analytical Solutions
SAS Institute

EURO XXI, July 4, 2006

Ted Ralphs, Matthew Saltzman , Matthew Galati Using COIN-OR to Solve the Uncapacitated Facility Location Problem



The Uncapacitated Facility Location Problem
Developing a Solver

Additional Resources

Outline

1 The Uncapacitated Facility Location Problem
UFL Formulation
Cutting Planes

2 Developing a Solver
The ufl Class
COIN Tools
Putting It All Together

3 Additional Resources

Ted Ralphs, Matthew Saltzman , Matthew Galati Using COIN-OR to Solve the Uncapacitated Facility Location Problem



The Uncapacitated Facility Location Problem
Developing a Solver

Additional Resources

UFL Formulation
Cutting Planes

Input Data

The following are the input data needed to describe an instance of the
uncapacitated facility location problem (UFL):

Data

a set of depots N = {1, ..., n}, a set of clients M = {1, ..., m},

the unit transportation cost cij to service client i from depot j,

the fixed cost fj for using depot j

Variables

xij is the amount of the demand for client i satisfied from depot j

yj is 1 if the depot is used, 0 otherwise

Ted Ralphs, Matthew Saltzman , Matthew Galati Using COIN-OR to Solve the Uncapacitated Facility Location Problem



The Uncapacitated Facility Location Problem
Developing a Solver

Additional Resources

UFL Formulation
Cutting Planes

Mathematical Programming Formulation

The following is a mathematical programming formulation of the UFL

UFL Formulation

Minimize
X
i∈M

X
j∈N

cijxij +
X
j∈N

fjyj (1)

subject to
X
j∈N

xij = di ∀i ∈ M, (2)

X
i∈M

xij ≤ (
X
i∈M

di)yj ∀j ∈ N, (3)

yj ∈ {0, 1} ∀j ∈ N (4)

0 ≤ xij ≤ di ∀i ∈ M, j ∈ N (5)

Ted Ralphs, Matthew Saltzman , Matthew Galati Using COIN-OR to Solve the Uncapacitated Facility Location Problem



The Uncapacitated Facility Location Problem
Developing a Solver

Additional Resources

UFL Formulation
Cutting Planes

Dynamically Generated Valid Inequalities

The formulation presented on the last slide can be tightened by
disaggregating the constraints (3).

xij − djyj ≤ 0, ∀i ∈ M, j ∈ N.

Rather than adding the inequalities to the initial formulation, we can
generate them dynamically.
Given the current LP solution, x∗, y∗, we check whether

x∗ij − djy∗j > ε, ∀i ∈ M, j ∈ N.

We can also generate inequalities valid for generic MILPs.
If a violation is found, we can iteratively add the constraint to the current
LP relaxation.

Ted Ralphs, Matthew Saltzman , Matthew Galati Using COIN-OR to Solve the Uncapacitated Facility Location Problem



The Uncapacitated Facility Location Problem
Developing a Solver

Additional Resources

UFL Formulation
Cutting Planes

Tightening the Initial Formulation

Here is the basic loop for tightening the initial formulation using the
dynamically generated inequalities from the previous slide.

Solving the LP relaxation

1 Form the initial LP relaxation and solve it to obtain (x̂, ŷ).
2 Iterate

1 Try to generate a valid inequality violated by (x̂, ŷ). If none are
violated, STOP.

2 Optionally, try to generate an improved feasible solution by rounding
ŷ.

3 Solve the current LP relaxation of the initial formulation to obtain
(x̂, ŷ).

4 If (x̂, ŷ) is feasible, STOP. Otherwise, go to Step 1.

Ted Ralphs, Matthew Saltzman , Matthew Galati Using COIN-OR to Solve the Uncapacitated Facility Location Problem



The Uncapacitated Facility Location Problem
Developing a Solver

Additional Resources

The ufl Class
COIN Tools
Putting It All Together

Data Members

C++ Class
class UFL {
private:
OsiSolverInterface * si;
double * trans_cost; //c[i][j] -> c[xindex(i,j)]
double * fixed_cost; //f[j]
double * demand; //d[j]
int M; //number of clients (index on i)
int N; //number of depots (index in j)
double total_demand; //sum{j in N} d[j]
int *integer_vars;

int xindex(int i, int j) {return i*N + j;}
int yindex(int j) {return M*N + j;}

};

Ted Ralphs, Matthew Saltzman , Matthew Galati Using COIN-OR to Solve the Uncapacitated Facility Location Problem



The Uncapacitated Facility Location Problem
Developing a Solver

Additional Resources

The ufl Class
COIN Tools
Putting It All Together

Methods

C++ Class
class UFL {
public:
UFL(const char* datafile);
~UFL();
void create_initial_model();
double tighten_initial_model(ostream *os = &cout);
void solve_model(ostream *os = &cout);

};

Ted Ralphs, Matthew Saltzman , Matthew Galati Using COIN-OR to Solve the Uncapacitated Facility Location Problem



The Uncapacitated Facility Location Problem
Developing a Solver

Additional Resources

The ufl Class
COIN Tools
Putting It All Together

Open Solver Interface

Uniform API for a variety of solvers: CBC, CLP, CPLEX, DyLP, FortMP,
GLPK, Mosek, OSL, Soplex, SYMPHONY, the Volume Algorithm,
XPRESS-MP supported to varying degrees.

Read input from MPS or CPLEX LP files or construct instances using
COIN-OR data structures.

Manipulate instances and output to MPS or LP file.

Set solver parameters.

Calls LP solver for LP or MIP LP relaxation.

Manages interaction with dynamic cut and column generators.

Calls MIP solver.

Returns solution and status information.

Ted Ralphs, Matthew Saltzman , Matthew Galati Using COIN-OR to Solve the Uncapacitated Facility Location Problem



The Uncapacitated Facility Location Problem
Developing a Solver

Additional Resources

The ufl Class
COIN Tools
Putting It All Together

Cut Generator Library

A collection of cutting-plane generators and management utilities.

Interacts with OSI to inspect problem instance and solution information
and get violated cuts.
Cuts include:

Combinatorial cuts: AllDifferent, Clique, KnapsackCover, OddHole
Flow cover cuts
Lift-and-project cuts
Mixed integer rounding cuts
General strengthening: DuplicateRows, Preprocessing, Probing,
SimpleRounding

Ted Ralphs, Matthew Saltzman , Matthew Galati Using COIN-OR to Solve the Uncapacitated Facility Location Problem



The Uncapacitated Facility Location Problem
Developing a Solver

Additional Resources

The ufl Class
COIN Tools
Putting It All Together

COIN LP Solver

High-quality, efficient LP solver.

Simplex and barrier algorithms.

QP with barrier algorithm.

Interface through OSI or native API.

Tight integration with CBC (COIN-OR Branch and Cut MIP solver).

Ted Ralphs, Matthew Saltzman , Matthew Galati Using COIN-OR to Solve the Uncapacitated Facility Location Problem



The Uncapacitated Facility Location Problem
Developing a Solver

Additional Resources

The ufl Class
COIN Tools
Putting It All Together

COIN Branch and Cut

State of the art implementation of branch and cut.

Tight integration with CLP, but can use other LP solvers through OSI.

Uses CGL to generate cutting planes.

Interface through OSI or native API.

Many customization options.

Ted Ralphs, Matthew Saltzman , Matthew Galati Using COIN-OR to Solve the Uncapacitated Facility Location Problem



The Uncapacitated Facility Location Problem
Developing a Solver

Additional Resources

The ufl Class
COIN Tools
Putting It All Together

The initialize_solver() Method

Initializing the LP solver

#if defined(COIN_USE_CLP)

#include "OsiClpSolverInterface.hpp"
typedef OsiClpSolverInterface OsiXxxSolverInterface;

#elif defined(COIN_USE_CPX)

#include "OsiCpxSolverInterface.hpp"
typedef OsiCpxSolverInterface OsiXxxSolverInterface;

#endif

OsiSolverInterface* UFL::initialize_solver() {
OsiXxxSolverInterface* si =
new OsiXxxSolverInterface();

return si;
}

Ted Ralphs, Matthew Saltzman , Matthew Galati Using COIN-OR to Solve the Uncapacitated Facility Location Problem



The Uncapacitated Facility Location Problem
Developing a Solver

Additional Resources

The ufl Class
COIN Tools
Putting It All Together

The create_initial_model() Method

Creating Rim Vectors

CoinIotaN(integer_vars, N, M * N);
CoinFillN(col_lb, n_cols, 0.0);

int i, j, index;

for (i = 0; i < M; i++) {
for (j = 0; j < N; j++) {
index = xindex(i,j);
objective[index] = trans_cost[index];
col_ub[index] = demand[i];

}
}
CoinFillN(col_ub + (M*N), N, 1.0);
CoinDisjointCopyN(fixed_cost, N, objective + (M * N));

Ted Ralphs, Matthew Saltzman , Matthew Galati Using COIN-OR to Solve the Uncapacitated Facility Location Problem



The Uncapacitated Facility Location Problem
Developing a Solver

Additional Resources

The ufl Class
COIN Tools
Putting It All Together

The create_initial_model() Method

Creating the Constraint Matrix

CoinPackedMatrix * matrix =
new CoinPackedMatrix(false,0,0);

matrix->setDimensions(0, n_cols);
for (i=0; i < M; i++) { //demand constraints:
CoinPackedVector row;
for (j=0; j < N; j++) row.insert(xindex(i,j),1.0);
matrix->appendRow(row);

}

for (j=0; j < N; j++) { //linking constraints:
CoinPackedVector row;
row.insert(yindex(j), -1.0 * total_demand);
for (i=0; i < M; i++) row.insert(xindex(i,j),1.0);
matrix->appendRow(row);

}

Ted Ralphs, Matthew Saltzman , Matthew Galati Using COIN-OR to Solve the Uncapacitated Facility Location Problem



The Uncapacitated Facility Location Problem
Developing a Solver

Additional Resources

The ufl Class
COIN Tools
Putting It All Together

Loading and Solving the LP Relaxation

Loading the Problem in the Solver

si->loadProblem(*matrix, col_lb, col_ub,
objective, row_lb, row_ub);

Solving the Initial LP Relaxation

si->initialSolve();

Ted Ralphs, Matthew Saltzman , Matthew Galati Using COIN-OR to Solve the Uncapacitated Facility Location Problem



The Uncapacitated Facility Location Problem
Developing a Solver

Additional Resources

The ufl Class
COIN Tools
Putting It All Together

The tighten_initial_model() Method

Tightening the Relaxation—Custom Cuts

const double* sol = si->getColSolution();
int newcuts = 0, i, j, xind, yind;
for (i = 0; i < M; i++) {
for (j = 0; j < N; j++) {
xind = xindex(i,j); yind = yindex(j);

if (sol[xind] - (demand[i] * sol[yind]) >
tolerance) { // violated constraint

CoinPackedVector cut;
cut.insert(xind, 1.0);
cut.insert(yind, -1.0 * demand[i]);
si->addRow(cut, -1.0 * si->getInfinity(), 0.0);
newcuts++;

}
}

}

Ted Ralphs, Matthew Saltzman , Matthew Galati Using COIN-OR to Solve the Uncapacitated Facility Location Problem



The Uncapacitated Facility Location Problem
Developing a Solver

Additional Resources

The ufl Class
COIN Tools
Putting It All Together

The tighten_initial_model() Method

Tightening the Relaxation—CGL Cuts

OsiCuts cutlist;
si->setInteger(integer_vars, N);
CglGomory * gomory = new CglGomory;
gomory->setLimit(100);
gomory->generateCuts(*si, cutlist);
CglKnapsackCover * knapsack = new CglKnapsackCover;
knapsack->generateCuts(*si, cutlist);
CglSimpleRounding * rounding = new CglSimpleRounding;
rounding->generateCuts(*si, cutlist);
CglOddHole * oddhole = new CglOddHole;
oddhole->generateCuts(*si, cutlist);
CglProbing * probe = new CglProbing;
probe->generateCuts(*si, cutlist);
si->applyCuts(cutlist);

Ted Ralphs, Matthew Saltzman , Matthew Galati Using COIN-OR to Solve the Uncapacitated Facility Location Problem



The Uncapacitated Facility Location Problem
Developing a Solver

Additional Resources

The ufl Class
COIN Tools
Putting It All Together

The solve_model() Method

Calling the Solver (Built-In MIP)

si->setInteger(integer_vars, N);

si->branchAndBound();
if (si->isProvenOptimal()) {
const double * solution = si->getColSolution();
const double * objCoeff = si->getObjCoefficients();
print_solution(solution, objCoeff, os);

}
else
cerr << "B&B failed to find optimal" << endl;

return;

Ted Ralphs, Matthew Saltzman , Matthew Galati Using COIN-OR to Solve the Uncapacitated Facility Location Problem



The Uncapacitated Facility Location Problem
Developing a Solver

Additional Resources

The ufl Class
COIN Tools
Putting It All Together

The solve_model() Method

Calling the Solver (CLP Requires Separate MIP)

CbcModel model(*si);
model.branchAndBound();
if (model.isProvenOptimal()) {
const double * solution = model.getColSolution();
const double * objCoeff = model.getObjCoefficients();
print_solution(solution, objCoeff, os);

}
else
cerr << "B&B failed to find optimal" << endl;

return;

Ted Ralphs, Matthew Saltzman , Matthew Galati Using COIN-OR to Solve the Uncapacitated Facility Location Problem



The Uncapacitated Facility Location Problem
Developing a Solver

Additional Resources

Where to go for Help

<project> is one of Osi, Cgl, Clp, Cbc, etc.

Project home pages:
https://projects.coin-or.org/<project> (Trac pages).

Documentation: http://www.coin-or.org/Doxygen/<project>
(Doxygen), http://www.coin-or.org/Clp/userguide/,
http://www.coin-or.org/Cbc/userguide/

Mailing lists: http://list.coin-or.org (see coin-discuss,
coin-osi-devel, cgl, coin-lpsolver—note lists will be
reorganized soon).

Ted Ralphs, Matthew Saltzman , Matthew Galati Using COIN-OR to Solve the Uncapacitated Facility Location Problem


	The Uncapacitated Facility Location Problem
	UFL Formulation
	Cutting Planes

	Developing a Solver
	The ufl Class
	COIN Tools
	Putting It All Together

	Additional Resources

