To Branch or to Cut.

Or, what am I going to do with this disjunction?

Ashutosh Mahajan1 and Ted Ralphs2

1Mathematics and Computer Science Division
Argonne National Laboratory

2Industrial and Systems Engineering
Lehigh University

August 27, 2009
The Main Question

For this talk . . .

Given a “General Disjunction”, we can use it in branch-and-bound or to generate valid inequalities. How do we decide to use it?
The Main Question

For this talk . . .

Given a “General Disjunction”, we can use it in branch-and-bound or to generate valid inequalities. How do we decide to use it?

The above question is mostly useless

The real question is: When should we stop cutting and start branching?

- Cutting plane methods have greatly improved our ability to solve Integer Programs.
- Cutting planes alone (the ones used today) are not sufficient.
- Theoretically, as well as computationally.
- It is important to understand when should we resort to cutting and when to branching.
- It is so difficult . . .

We look at the fundamental building block of branch-and-bound and cutting-plane algorithms: A Disjunction
Quick Review

The Problem

\[z_{IP} = \min cx \]

\[s.t. \ Ax \geq b \]

\[x \in \mathbb{Z}^n, \]

where \(A \in \mathbb{Q}^{m \times n}, b \in \mathbb{Q}^m, c \in \mathbb{Q}^n, m, n \in \mathbb{N} \) are given.

Quick Review

The Problem

\[
z_{IP} = \min cx \\
\text{subject to } Ax \geq b \\
x \in \mathbb{Z}^n,
\]

where \(A \in \mathbb{Q}^{m \times n}, b \in \mathbb{Q}^m, c \in \mathbb{Q}^n, m, n \in \mathbb{N} \) are given.

A Relaxation

\[
z_{LP} = \min cx \\
\text{subject to } Ax \geq b \\
x \in \mathbb{R}^n,
\]

where \(A \in \mathbb{Q}^{m \times n}, b \in \mathbb{Q}^m, c \in \mathbb{Q}^n, m, n \in \mathbb{N} \) are given.

Basic Approach:

1. \(z_{LP} \leq z_{IP} \) provides a lower bound \((z_l) \) on \(z_{IP} \).
2. Any \(\hat{x} \in \mathbb{Z}^d \times \mathbb{R}^{n-d} \) s.t. \(A\hat{x} \geq b \) provides an upper bound \((z_u) \) on \(z_{IP} \).
3. “Tighten” the feasible region of the (LP) relaxation iteratively.
4. Repeat until \(z_l = z_u \).
Two Algorithms

Branch and Bound Algorithm

Cutting Plane Algorithm
Disjunctions

If \((\hat{\pi}, \hat{\pi}_0) \in \mathbb{Z}^{n+1}\), any \(\hat{x} \in \mathbb{Z}^n\) must satisfy the disjunction

\[
\hat{\pi}\hat{x} \leq \hat{\pi}_0 \lor \hat{\pi}\hat{x} \geq \hat{\pi}_0 + 1
\]

(1)

- When \(\pi = ([0, \ldots, 0, 1, 0, \ldots, 0])\), we call \((\pi, \pi_0)\) a Variable Disjunction. E.g. \(x_2 \leq 1 \lor x_2 \geq 2\).
- Otherwise we call it a General Disjunction. E.g. \(2x_1 + 5x_2 - 2x_3 \leq 0 \lor 2x_1 + 5x_2 - 2x_3 \geq 1\).
- There are other types of disjunctions as well.

For the given IP:

\[
z_{IP} = \min cx \\
\text{s.t. } Ax \geq b \quad (2) \\
x \in \mathbb{Z}^n,
\]

(1) can now be strengthened to:

Any \(\hat{x}\) feasible to (IP) must satisfy:

\[
\begin{align*}
Ax &\geq b \\
\hat{\pi}x &\leq \hat{\pi}_0 \quad (P_1) \\
\hat{\pi}x &\geq \hat{\pi}_0 + 1 \quad (P_2)
\end{align*}
\]

(\(x \in \mathbb{R}^n\))
Disjunctions for . . .

...Branching

- Solve $\min_{x \in P_1} cx$, $\min_{x \in P_2} cx$ separately.
- $P_1 \cup P_2 \subseteq P$.
- Two different subproblems after branching.

...Generating Split Cuts

- Find an inequality $(\alpha, \beta) \in \mathbb{R}^{n+1}$ valid for $\text{cl}(\text{conv}(P_1 \cup P_2))$.
- Add (α, β) to (LP) to get a tighter relaxation.

Same disjunction, Different purposes

The same disjunction (π, π_0) can be used for either purpose.
Some History

Branching

- Mostly limited to variable disjunctions.
- Disjunctions that “**improve the bound**” the most are favorable: Strong Branching, Pseudo-cost Branching, Reliability Branching
 - (Benichou, 1971), (Linderoth and Savelsbergh, 1999),
 - (Achterberg et al., 2005)
- General disjunctions have been used for polynomial time algorithms in fixed dimension. (Lenstra, 1983) etc.
Some History

Branching

- Mostly limited to variable disjunctions.
- Disjunctions that “improve the bound” the most are favorable: Strong Branching, Pseudo-cost Branching, Reliability Branching
- (Benichou, 1971), (Linderoth and Savelsbergh, 1999), (Achterberg et al., 2005)
- General disjunctions have been used for polynomial time algorithms in fixed dimension. (Lenstra, 1983) etc.

Split Inequalities

1. (Cook et al., 1990), (Nemhauser & Wolsey, 1990), (Balas, 1971)
3. Inequalities with “larger violation” are favorable.
4. Underlying disjunctions could be variable disjunctions or general disjunctions.
Why not use branching variable-disjunctions to generate cutting planes?

Lift and Project. (Balas et. al, 1993), (Balas and Perregaard, 2002).
Give and Take

<table>
<thead>
<tr>
<th>Why not use branching variable-disjunctions to generate cutting planes?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lift and Project. (Balas et. al, 1993), (Balas and Perregaard, 2002).</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Why not use (general) cutting-plane-disjunctions for branching?</th>
</tr>
</thead>
<tbody>
<tr>
<td>- (Karamanov and Cornuéjols, 2007). Several disjunctions from GMI.</td>
</tr>
<tr>
<td>- (Cornuéjols et. al, 2008). Several improved disjunctions from the Simplex Tableau.</td>
</tr>
<tr>
<td>- Use “strong-branching” to select the best disjunction.</td>
</tr>
</tbody>
</table>
Give and Take

Why not use branching variable-disjunctions to generate cutting planes?

Lift and Project. (Balas et. al, 1993), (Balas and Perregaard, 2002).

Why not use (general) cutting-plane-disjunctions for branching?

- (Karamanov and Cornuéjols, 2007). Several disjunctions from GMI.
- (Cornuéjols et. al, 2008). Several improved disjunctions from the Simplex Tableau.
- Use “strong-branching” to select the best disjunction.

We try the following

Use general-branching-disjunctions to generate cuts.

What is a nice general-branching-disjunction?
Why not use branching variable-disjunctions to generate cutting planes?

Lift and Project. (Balas et. al, 1993), (Balas and Perregaard, 2002).

Why not use (general) cutting-plane-disjunctions for branching?

- (Karamanov and Cornuéjols, 2007). Several disjunctions from GMI.
- (Cornuéjols et. al, 2008). Several improved disjunctions from the Simplex Tableau.
- Use “strong-branching” to select the best disjunction.

We try the following

Use general-branching-disjunctions to generate cuts.

What is a nice general-branching-disjunction?

One that maximizes bound — a strongest general disjunction.
Finding a strong general disjunction

- See (A.M. and Ralphs, 2009a, 2009b) for details.
- Formulated a MIP with parameter K, such that it is feasible if and only if there exists a disjunction $(\hat{\pi}, \hat{\pi}_0)$ that will improve the bound of original instance to at least K.
- Solve a sequence of MIPs with varying K.
- Add additional constraints (like $\#$ non-zeros in disjunction $\leq k$).
Moving from Branching to Cutting

- Find a strong general disjunctions as before.
- Use it to find valid inequalities.
- $cx \geq K$ is one of them. We are interested in more (and different) inequalities.
- How to find these?

It depends

- What type of inequalities do we want? – C-G cuts, Split cuts.
- What quality measure is used? – Violation of the current LP solution (x_{LP}).
C-G Cuts

For a given IP:

$$\begin{align*}
z_{IP} &= \min cx \\
\text{s.t. } Ax &\geq b \\
x &\in \mathbb{Z}^n,
\end{align*}$$

- For any $u \in \mathbb{R}^m$, $uAx \geq ub$ is valid for the LP relaxation.
- If $uA \in \mathbb{Z}^n$, then $uAx \geq \lceil ub \rceil$ is valid for the IP – C-G cut.
- Let $\hat{\pi} = uA$, $\hat{\pi}_0 = \lceil ub \rceil - 1$ and consider the disjunction $(\hat{\pi}, \hat{\pi}_0)$.
- $P_1 = \{x|Ax \geq b, \hat{\pi}x \leq \hat{\pi}_0\} = \phi$
- $\hat{\pi}x \geq \hat{\pi}_0 + 1$ is a valid inequality.
- It is trivially the best inequality obtained from the disjunction $(\hat{\pi}, \hat{\pi}_0)$.
Finding C-G Cuts

\[
\begin{align*}
 z_{IP} &= \min cx \\
 \text{s.t. } Ax &\geq b \quad \text{(IP)} \\
 x &\in \mathbb{Z}^n,
\end{align*}
\]

\[
\begin{align*}
 z_{LP} &= \min cx \\
 \text{s.t. } Ax &\geq b \quad \text{(LP)} \\
 x &\in \mathbb{R}^n,
\end{align*}
\]

\((\hat{\pi}, \hat{\pi}_0) \in \mathbb{Z}^{n+1}\) is a disjunction that gives a C-G inequality that raises the bound to a given \(K\).
Finding C-G Cuts

\[z_{lp} = \min cx \]
\[s.t. \ Ax \geq b \quad (IP) \]
\[x \in \mathbb{Z}^n, \]
\[(\hat{\pi}, \hat{\pi}_0) \in \mathbb{Z}^{n+1} \] is a disjunction that gives a C-G inequality that raises the bound to a given \(K \).
\[\iff \] both the following LPs in \(x \) are infeasible.

\[Ax \geq b \]
\[\hat{\pi}x \leq \hat{\pi}_0 \]
\[x \in \mathbb{R}^n. \]
Finding C-G Cuts

\[z_{IP} = \min cx \quad \text{(IP)} \]
\[s.t. \ Ax \geq b \]
\[x \in \mathbb{Z}^n, \]
\[z_{LP} = \min cx \quad \text{(LP)} \]
\[s.t. \ Ax \geq b \]
\[x \in \mathbb{R}^n, \]
\[(\hat{\pi}, \hat{\pi}_0) \in \mathbb{Z}^{n+1} \text{ is a disjunction that gives a C-G inequality that raises} \]
\[\text{the bound to a given } K. \]
\[\iff \text{both the following LPs in } x \text{ are infeasible.} \]
\[Ax \geq b \]
\[\hat{\pi}x \leq \hat{\pi}_0 \]
\[x \in \mathbb{R}^n. \]
\[\iff \text{both the following LPs are feasible.} \]
\[pA - \hat{\pi} = 0 \]
\[pb - \hat{\pi}_0 > 0 \]
\[p \in \mathbb{R}_+^m \]
\[qA - sc + \hat{\pi} = 0 \]
\[qb - sK + \hat{\pi}_0 > -1 \]
\[q \in \mathbb{R}_+^m, s \in \mathbb{R}_+ \]
We can obtain a C-G inequality that increases the lower bound to K if and only if the following MIP is feasible:

$$pA - \pi = 0$$
$$pb - \pi_0 > 0$$
$$qA - sc + \pi = 0$$
$$qb - sK + \pi_0 > -1$$

$$\begin{align*}
p & \in \mathbb{R}_+^m \\q & \in \mathbb{R}_+^m, s \in \mathbb{R}_+ \\\pi & \in \mathbb{Z}^n, \pi_0 \in \mathbb{Z}
\end{align*}$$ (4)

- Similar to formulation of (Fischetti and Lodi, 2005) for optimizing over C-G closure.
- They select the maximum violated C-G inequality.
- A computational experiment to compare the two formulations.
Computational Experiment: C-G Cuts

- We need to solve (4) for different values of K.
- Set a time limit of 1000s for all iterations of (4) (200s for each run).
- Set a time limit of 1000s for the MIP formulation to find the maximum violation C-G cut.
- 177 instances from MIPLIB-3, MIPLIB-2003, Mittlemann-Set
- CPLEX-10.2, Coin-Utils.
- 2GB RAM, 4MB Cache, 1.86GHz, 64bit-LINUX.
- Time limit for each instance: 20 hours.
Computational Experiment: C-G Cuts

[Graph showing the relationship between the gap (%) closed by inequalities and the number of valid C-G inequalities, with markers indicating maximization of bound and violation.]
Finding Split Cuts

Using the same approach, one can derive split-inequalities

We can obtain split-inequalities from a single disjunction such that the lower bound increases to K if and only if the following MIP is feasible:

$$
pA - s_L c - \pi = 0
$$
$$
pb - s_L K - \pi_0 > 0
$$
$$
qA - s_R c + \pi = 0
$$
$$
qb - s_R K + \pi_0 > -1
$$

$$
p \in \mathbb{R}_+^m, q \in \mathbb{R}_+^m, s_L, s_R \in \mathbb{R}_+
$$
$$
\pi \in \mathbb{Z}^n, \pi_0 \in \mathbb{Z}
$$

(5)

Important Difference from C-G cuts

We can generate many split-inequalities using a given disjunction. We use CGLP to generate such inequalities.
Finding Split Cuts

- (Balas and Saxena, 2008) use a similar approach to find maximally violated split inequalities.
- Both methods require solution to a parametric MIP.
- After a disjunction is obtained, we get inequalities by solving a CGLP in both cases.

```
Solve a sequence of MIPs to find a general disjunction \((p, \pi_0)\)

Do we have a valid disjunction?

\[\text{no} \rightarrow \text{Stop}\]

\[\text{yes} \rightarrow \text{Solve CGLP using the disjunction} \,(p, \pi_0)\]

Do we have a valid inequality?

\[\text{no} \rightarrow \text{Add the valid inequality to the LP relaxation and re-solve}\]

\[\text{yes} \rightarrow \text{Stop}\]
```
Computational Experiment: Split Cuts

![Figure: Scatter plot showing the gap (%) closed by inequalities against the number of valid split inequalities. The plot includes two types of points, marked with '+' for maximize bound and '*' for maximize violation. The x-axis represents the number of valid split inequalities, ranging from 1 to 65536, while the y-axis shows the gap (%) closed by inequalities, ranging from 0.1% to 64%.]
Conclusions

- Set up experiments to use branching-disjunctions to generate valid inequalities for the cutting-plane algorithm.
- Results suggest that disjunctions selected for maximum bound improvement might be more useful than those selected for maximum violation.
- Might be another piece of evidence suggesting branching and valid inequalities should be viewed more holistically.
- Cuts derived from such disjunctions may be selected by different criteria.
- Need to devise new methods of identifying good disjunctions.
- Should we cut or branch at a given stage of the branch-and-cut algorithm.
To Branch or to Cut.

Or, what am I going to do with this disjunction?

Ashutosh Mahajan¹ and Ted Ralphs²

¹Mathematics and Computer Science Division
Argonne National Laboratory

²Industrial and Systems Engineering
Lehigh University

August 27, 2009