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Motivation

A standard mathematical program models a set of decisions tobe made
simultaneouslyby asingledecision-maker (i.e., with asingleobjective).

Many decision problems arising both in real-world applications and in the theory
of integer programming involve

multiple, independent decision-makers(DMs),
multiple, possibly conflicting objectives, and/or
hierarchical/multi-stage decisions.

Modeling frameworks
Multiobjective Programming⇐ multiple objectives, single DM
Mathematical Programming with Recourse⇐ multiple stages, single DM
Multilevel Programming⇐ multiple stages, multiple objectives, multiple DMs

Multilevel programminggeneralizes standard mathematical programming by
modeling hierarchical decision problems, such as Stackelberg games.

Such models arises in aremarkably wide array of applications.
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Nash and Stackelberg Games

Many game theoretic models can be formulated as optimization problems
involving multiple decision makers.

In a Nash game, the players are treated as equals and take simultaneous action.

Computationally, one often wishes to find aNash equilibrium, in which the
action of each player is optimal, given the actions of all other players.

In a Stackelberg game, there is a dominant player, called theleader, who acts
first and other players react.

In this case, one is concerned with determining the leader’sdecision, given the
assumption that thefollowerswill react optimally.

This can often be modeled as a bilevel program.
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Bilevel (Integer) Linear Programming

Formally, abilevel linear programis described as follows.

x ∈ X ⊆ Rn1 are theupper-level variables

y ∈ Y ⊆ Rn2 are thelower-level variables

Bilevel (Integer) Linear Program

max
{

c1x + d1y | x ∈ PU ∩ X, y ∈ argmin{d2y | y ∈ PL(x) ∩ Y}
}

(MIBLP)

Theupper-andlower-level feasible regionsare:

PU =
{

x ∈ R+ | A1x ≤ b1
}

and

PL(x) =
{

y ∈ R+ | G2y ≥ b2 − A2x
}

.

We consider the general case in whichX = Zp1 × Rn1−p1 andY = Zp2 × Rn2−p2.
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Notation

Notation

ΩI = {(x, y) ∈ (X × Y) | x ∈ PU, y ∈ PL(x)}

Ω = {(x, y) ∈ (Rn1 × Rn2) | x ∈ PU, y ∈ PL(x)}

MI (x) = argmin{d2y | y ∈ (PL(x) ∩ Y)}

F I =
{

(x, y) | x ∈ (PU ∩ X), y ∈ MI (x)
}

F =
{

(x, y) | x ∈ PU , y ∈ argmin{d2y | y ∈ PL(x)}
}

Underlying bilevel linear program (BLP):

max
(x,y)∈F

c1x + d1y

Underlying mixed integer linear program (MILP):

max
(x,y)∈ΩI

c1x + d1y

Underlying linear program (LP):

max
(x,y)∈Ω

c1x + d1y
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(Standard) Mixed Integer Linear Programs

In parts of the talk, we will need to consider a (standard)mixed integer linear
program(MILP).

To simplify matters, when we discuss a standard MILP, it willbe of the form

MILP

min{c⊤x | x ∈ P ∩ (Zp × Rn−p)}, (MILP)

whereP = {x ∈ Rn
+ | Ax = b}, A ∈ Qm×n, b ∈ Qm, c ∈ Qn.
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Basic Assumptions

For the remainder of the talk, we consider decision problemsin which there are
two DMs, aleaderor upper-levelDM and afolloweror lower-levelDM.

We assumeindividual rationalityof the two DMs, i.e., the leader can predict the
follower’s reaction to a given course of action.

For simplicity, we also assume that for every action by the leader, the follower
has a feasible reaction.

The follower may in fact have more than one equally favorablereaction to a given
action by the leader.
These alternatives may not be equally favorable to the leader.
We assume that the leader may choose among the follower’s alternatives.
This assumption is reasonable if the players have a “semi-cooperative” relationship.

We assume the feasible setF I is nonempty and compact to ensure solutions
exist.
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Overview of Practical Applications

Hierarchical decision systems
Government agencies
Large corporations with multiple subsidiaries
Markets with a single “market-maker.”
Decision problems with recourse

Parties in direct conflict
Zero sum games
Interdiction problems

Modeling “robustness”: leader represents external phenomena that cannot be
controlled.

Weather
External market conditions

Controlling optimized systems: follower represents a system that is optimized by
its nature.

Electrical networks
Biological systems
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Example: Electricity Networks (Bienstock and Verma
(2008))

As we know, electricity networks operate according to principles of optimization.

Given a network, determining the power flows is an optimization problem.

Suppose we wish to know the minimum number of links that need to be removed
from the network in order to cause a failure.

This can be viewed as a Stackelberg game.

Note that neither the leader nor the follower is “cognizant”in this case.
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Overview of Technical Applications

Bilevel structure is inherent in many decision problems that occur withinbranch
and cutand other algorithms based on disjunctive methods.

In many cases, we would like to choose the “most effective” disjunction
according to some criteria.

The choice of disjunction is thus an optimization problem that itself has bilevel
structure.

The bilevel nature arises from the fact that the effectiveness of the disjunction is
usually evaluated by solving another optimization problem.

Examples
Choosing the valid inequality with the largest violation.
Choosing a branching disjunction that achieves maximal bound improvement.
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Example: Capacity Constraints for CVRP

In the Capacitated Vehicle Routing Problem (CVRP), thecapacity constraints
are of the form

∑

e={i,j}∈E
i∈S,j 6∈S

xe ≥ 2b(S) ∀S⊂ N, |S| > 1, (1)

whereb(S) is any lower boundon the number of vehicles required to serve
customers in setS.
By definingbinary variables

yi = 1 if customeri belongs tōS, and
ze = 1 if edgee belongs toδ(S̄),

we obtain the following bilevel formulation for the separation problem:

min
∑

e∈E

x̂eze − 2b(S̄) (2)

ze ≥ yi − yj ∀e∈ E (3)

ze ≥ yj − yi ∀e∈ E (4)

b(S̄) = max{b(S̄) | b(S̄) is a valid lower bound} (5)
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Example: Capacity Constraints for CVRP (cont.d)

If the bin packing problem is used in the lower-level, the formulation becomes:

min
∑

e∈E

x̂eze − 2b(S̄) (6)

ze ≥ yi − yj ∀e = {i, j} (7)

ze ≥ yj − yi ∀e = {i, j} (8)

b(S̄) = min
n

∑

ℓ=1

hℓ (9)

n
∑

ℓ=1

wℓ
i = yi ∀i ∈ N (10)

∑

i∈N

diw
ℓ
i ≤ Khℓ ℓ = 1, . . . , n, (11)

where we introduce the additional binary variables

wℓ
i = 1 if customeri is served by vehicleℓ, and

hℓ = 1 if vehicleℓ is used.
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Recourse Problems

If d1 = −d2, we can view this as amathematical program with recourse.

We can reformulate the bilevel program as follows.

min{−c1x + Q(x) | x ∈ PU ∩ X}, (12)

where

Q(x) = min{d1y | y ∈ PL(x) ∩ Y}. (13)

The functionQ is known as thevalue functionof the recourse problem.
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Recourse Problems with Continuous Second Stage

If Y = Rn1, it is well-known by LP duality that

Q(x) = max{u(b2 − A2x) | uG2 ≤ d1, u ∈ R
m2
+ }, (14)

so we can further reformulate (12) as

min{c1x + z | x ∈ PU ∩ X, z≥ ui(b2 − A2x) ∀i ∈ D}, (15)

whereD is a set indexing the extreme points of the dual polyhedron

{u ∈ R
m2
+ | uG2 ≥ d1}. (16)
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Benders Decomposition

We can then solve (12) by Benders decomposition.

This amounts to solving (15) by cut generation.

The value function of the lower-level problem is convex in the upper-level
variables, which is what makes the problem tractable.

zLP (b) + u∗(v − b)

zLP

v
b
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Two-Stage Stochastic Integer Programs

Consider the two-stage stochastic mixed integer program

min{c1x + EξQξ(x) | x ∈ PU ∩ X}, (17)

where

Qξ(x) = min{d2y | y ∈ Y, G2y ≥ ω(ξ) − A2x}, (18)

ξ is a random variable from a probability space(Ξ, F ,P), and for eachξ ∈ Ξ,
ω(ξ) ∈ Rm2.

If the distribution ofξ is discrete and has finite support, then (17) is a bilevel
program.
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Continuous Second Stage

In general, ifY = Rn1, then the lower-level problem can be replaced with its
optimality conditions.
The optimality conditions for the lower-level optimization problem are

G2y ≥ b2 − A2x

uG2 ≤ d2

u(b2 − G2 − A2x) = 0

(d2 − uG2)y = 0

u, y ∈ R+

WhenX = Rn1, this is a special case of a class of non-linear mathematical
programs known asmathematical programs with equilibrium constraints
(MPECs).
An MPEC can be solved in a number of ways, including converting it to a
standard integer program.
Note that in this case, the value function of the lower-levelproblem is piecewise
linear, but not necessarily convex.
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Other Cases

Pure integer.
Positive constraint matrix at lower level.
Binary variables at the upper and/or lower level.
Interdiction problems.

Mixed Integer Interdiction

max
x∈P I

U

min
y∈P I

L(x)
dy (MIPINT)

where

P I
U =

{

x ∈ Bn | A1x ≤ b1
}

P I
L(x) =

{

y ∈ Zp × Rn−p | G2y ≥ b2, y ≤ u(e− x)
}

.

The case where follower’s problem has network structure is called the
network interdiction problemand has been well-studied.

The model above allows for lower-level systems described bygeneral MILPs.
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The General Case

When some/all of the variables are discrete, the problem becomes more
complex, both practically and theoretically.

Many of the ideas from these special cases can be extendedin principle.

However, it’s very difficult to obtain anything tractablein practice.

An obvious question is whether we can generalize any of the very
well-developed methodology we know for solving standard MILPs.

We can do so to a certain extent, but the proper generalizations are not obvious.
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Complexity

It is perhaps to be expected that general BMILPs are in a different complexity
class than standard MILPs.

This is because checking feasibility is itself an NP-complete problem for
BMILPs.

Even the case in whichX = Rn
1 andY = Rn

2 is NP-complete.

Bilevel programming is (apparently)Σp
2-complete, though we do not have a

formal proof for the general case.

The classΣp
2 is one step higher in the so-called “polynomial-time hierarchy”

than the class NP(= Σp
1).

Roughly speaking, this class consists of problems that could be solved in
nondeterministic polynomial time, given an oracle for problems in NP.
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Example

Consider the following instance of (MIBLP) from Moore and Bard (1990).

max
x∈Z

x + 10y

subject to y ∈ argmin{y : 25x − 20y ≥ −30

−x − 2y ≥ −10

−2x + y ≥ −15

2x + 10y ≥ 15

y ∈ Z }

8

1
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5
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������������������
������������������

1 2 3 4 5 6 7

conv(F I)

F

conv(ΩI)

x

y

F I

From the figure, we can make several observations:
1 F ⊆ Ω, F I ⊆ ΩI , andΩI ∈ Ω

2 FI 6⊆ F

3 Solutions to (MIBLP) do not occur at extreme points ofconv(ΩI )
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Properties of MIBLPs

In this example:

Optimizing overF yields theintegersolution(8, 1), with the upper-level
objective value18.

Imposing integrality yields the solution(2, 2), with upper-level objective value
22

From this we can make two important observations:

1 The objective value obtained by relaxing integrality is nota valid bound
on the solution value of the original problem,

2 Even when solutions tomax(x,y)∈F c1x + d1y are inF I , they are not
necessarily optimal.

Thus, some familiar properties from the MILP case do not holdhere.
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Understanding the Structure

The key to understanding the structure of an MIBLP is to consider the value
function associated with the lower-level problem.

Thisvalue functionof the instance (MILP) is a functionz : R → R ∪ {±∞}
defined as follows:

MILP Value Function

z(d) = min
x∈S(d)

c⊤x, (19)

where, for a given right-hand side vectord ∈ Rm,

S(d) = {x ∈ Z
p
+ × R

n−p
+ | Ax = d}.

In what follows, we will setΘ = {d ∈ Rm | S(d) 6= ∅}.
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Example: Value Function

z(d) = min 1
2x1 + 2x3 + x4

s.t x1 −
3
2x2 + x3 − x4 = d and

x1, x2 ∈ Z+, x3, x4 ∈ R+.

0

z(d)

d
1-1-2-3 3 42-4 −

3
2 −

1
2−

5
2−

7
2

5
2

3
2

1
2

1
2

3
2

5
2

7
2

1

2

3
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Value Function Reformulation

If we knew the value function explicitly, we could reformulate (MIBLP) as

1 2 3 4 5 6 7 8

1

2

3

4

5
F

x

y

F I max c1x + d1y

subject to A1x ≤ b1

G2y ≥ b2 − A2x

d2y = zLL(b
2 − A2x)

x ∈ X, y ∈ Y,

wherezLL is the value function of the lower-level problem.

This is, in principle, a standard mathematical program.

It is easy to see why relaxing integrality does not yield a valid bound.

In this case, we are effectively replacingzLL with the value function of the LP
relaxation (more on this soon).
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Properties of the Value Function

It is subadditive overΘ.

It is piecewise polyhedral.

For an ILP, it can be computed by a finite number of limited operations on
elements of the RHS:

(i) rational multiplication
(ii) nonnegative combination
(iii) rounding







Chvátal fcns.

(iv) taking the maximum















Gomory fcns.
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Properties of the Value Function (cont.)

There is a one-to-one correspondence between ILP instancesand Gomory
functions.

TheJeroslow Formulashows that the value function of an MILP can be
constructed from the value function of an associated ILP.

The value function of the earlier example is

z(d) = min











3
2 max

{⌈

⌊2d⌋
3

⌉

,
⌈

⌊2d⌋
2

⌉}

+ 3⌈2d⌉
2 + 2d,

3
2 max

{⌈

⌈2d⌉
3

⌉

,
⌈

⌈2d⌉
2

⌉}

− d,
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Jeroslow Formula

We consider again the instance (MILP). Let the setE consist of the index sets of dual
feasible bases of the linear program

min{
1
M

cCxC :
1
M

ACxC = b, x ≥ 0}

whereM ∈ Z+ such that for anyE ∈ E , MA−1
E aj ∈ Zm for all j ∈ I .

Jeroslow Formula

Theorem 1 There is ag ∈ G m such that

z(d) = min
E∈E

g(⌊d⌋E) + vE(d− ⌊d⌋E) ∀d ∈ Rm with S(d) 6= ∅,

where forE ∈ E , ⌊d⌋E = AE⌊A
−1
E d⌋ andvE is the corresponding basic feasible

solution.
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Approximating the Value Function

In general, it is difficult to construct the value function explicitly.

We therefore propose to approximate the value function by either upper or lower
bounding functions

Lower bounds

Derived by considering the value function ofrelaxationsof the original
problem or by constructingdual functions⇒ Relax constraints.

Upper bounds

Derived by considering the value function ofrestrictionsof the original
problem⇒ Fix variables.
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The LP Relaxation

The value function of the LP relaxation of the original problem provides an easy
lower bound.

FLP(d) = max
v∈Rm

{vd : vA≤ c}.

By linear programming duality theory, we haveFLP(d) ≤ z(d) for all d ∈ Rm.

Of course,FLP is not necessarily strong.
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Example: LP Dual Function

FLP(d) = min vd,
s.t 0≥ v ≥ − 1

2, and
v ∈ R,

which can be written explicitly as

FLP(d) =

{

0, d ≤ 0
− 1

2d, d > 0
.

0
d

1-1-2-3 3 42-4 −
3
2 −
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2
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2
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z(d)
FLP(d)
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Relaxing Linear Constraints

Consider thevalue functions of each single row relaxation:

zi(q) = min{cx | aix = q, x ∈ Zr
+ × Rn−r

+ } q ∈ R, i ∈ M ≡ {1, . . . , m}

whereai is theith row of A.

Theorem 2 Let F(d) = max
i∈M

{zi(di)}, d = (d1, . . . , dm), d ∈ Rm. ThenF is

subadditive andF(d) ≤ z(d) ∀d ∈ Rm.

We know a lot about the structure of the value function of single-row relaxations.
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Aggregation

ForS⊆ M, ω ∈ R|S|, set

GS(q, ω) = min{cx | ωaSx = ωq, x ∈ Zr
+ × Rn−r

+ } ∀q ∈ R|S|

Theorem 3 Let

FS(ω, d) = max

{

GS(dS, ω), max
i∈M\S

{zi(di)}

}

, d ∈ Rm.

FS is subadditive andz(d) ≥ FS(ω, d) for anyω ∈ R|S|, d ∈ Rm.

As with cutting planes, different aggregation procedures are possible.
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Dual Functions

A dual functionF : Rm → R is one that satisfiesF(d) ≤ z(d) for all d ∈ Rm.

This is a generalization of the concept of dual solution fromthe LP case.

How to select such a function?

We generally choose one for whichF(b) ≈ z(b) for some particularb ∈ Rm2 of
interest.

This results in the following dual problem:

zD = max{F(b) : F(d) ≤ z(d), d ∈ Rm, F ∈ Υm}

whereΥm ⊆ {f | f : Rm→R}

We callF∗ strongfor this instance ifF∗ is a feasibledual function and
F∗(b) = z(b).

This dual instance always has a solutionF∗ that is strong if the value function is
bounded andΥm ≡ {f | f : Rm→R}. Why?
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The Subadditive Dual

By considering that

F(d) ≤ z(d), d ∈ Rm ⇐⇒ F(d) ≤ cx , x ∈ S(d), d ∈ Rm

⇐⇒ F(Ax) ≤ cx , x ∈ Zn
+,

the generalized dual problem can be rewritten as

zD = max{F(b) : F(Ax) ≤ cx, x ∈ Zr
+ × Rn−r

+ , F ∈ Υm}.

Can we further restrictΥm and still guarantee a strong dual solution?

The class of linear functions? NO!

The class of convex functions? NO!

The class of sudadditive functions? YES!
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The Subadditive Dual

Let a functionF be defined over a domainV. ThenF is subadditive if
F(v1) + F(v2) ≥ F(v1 + v2)∀v1, v2, v1 + v2 ∈ V.

Note that the value functionz is subadditive overΘ. Why?

If Υm ≡ Γm ≡ {F is subadditive| F : Rm→R, F(0) = 0}, we can rewrite the
dual problem above as thesubadditive dual

zD = max F(b)

F(aj) ≤ cj j = 1, ..., r,

F̄(aj) ≤ cj j = r + 1, ..., n, and

F ∈ Γm,

where the function̄F is defined by

F̄(d) = lim sup
δ→0+

F(δd)

δ
∀d ∈ Rm.

Here,F̄ is theupper d-directional derivativeof F at zero.
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Example: Value Function Revisited

z(d) = min 1
2x1 + 2x3 + x4

s.t x1 −
3
2x2 + x3 − x4 = d and

x1, x2 ∈ Z+, x3, x4 ∈ R+.

0

z(d)

d
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Example: Upper D-directional Derivative

The upper d-directional derivative can be interpreted as the slope of the value
function in directiond at 0.

For the example, we have

0
d
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Example: Subadditive Dual

For our IP instance, the subadditive dual problem is

max F(b)
F(1) ≤ 1

2
F(− 3

2) ≤ 0
F̄(1) ≤ 2

F̄(−1) ≤ 1
F ∈ Γ1.

.

and we have the following feasible dual functions:
1 F1(d) = d

2 is an optimal dual function forb ∈ {0, 1, 2, ...}.

2 F2(d) = 0 is an optimal function forb ∈ {...,−3,− 3
2, 0}.

3 F3(d) = max{ 1
2⌈d − ⌈⌈d⌉−d⌉

4 ⌉, 2d− 3
2⌈d− ⌈⌈d⌉−d⌉

4 ⌉} is an optimal function for
b ∈ {[0, 1

4] ∪ [1, 5
4] ∪ [2, 9

4] ∪ ...}.

4 F4(d) = max{ 3
2⌈

2d
3 −

2⌈⌈ 2d
3 ⌉− 2d

3 ⌉

3 ⌉ − d,− 3
4⌈

2d
3 −

2⌈⌈ 2d
3 ⌉− 2d

3 ⌉

3 ⌉ + d
2} is an optimal

function forb ∈ {... ∪ [− 7
2,−3] ∪ [−2,− 3

2] ∪ [− 1
2, 0]}
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Example: Feasible Dual Functions

0
d

1-1-2-3 3 42-4 −
3
2 −

1
2−

5
2−

7
2

5
2

3
2

1
2

1
2

3
2

5
2

7
2

1

2

3

z(d)
F(d)

Notice how different dual solutions are optimal for some right-hand sides and
not for others.

Only the value function is optimal for all right-hand sides.
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Properties of the Subadditive Dual

Using the subadditive dual, we can generalize many of the properties of the LP dual.

Weak/Strong Duality

Farkas Lemma

Optimality conditions (complementary slackness)
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Reformulation with Optimality Conditions

In principle, we can use subadditive duality to obtain optimality conditions for the
lower-level problem (reformulation shown here is for the pure integer case).

max
x,y,F

c1x + d1y

subject to A1x ≤ b1

A2x + G2y ≥ b2

F(g2
j ) ≤ d2

j , ∀j = 1, . . . , n2

(F(g2
j ) − d2

j )yj = 0, ∀j = 1, . . . , n2

n2
∑

j=1

F(g2
j )yj = F(b2 − A2x)

x ∈ Zn1
+ , y ∈ Zn2

+ , F ∈ Γm2.

This is analogous to the reformulation in the continuous case, but is intractable in
general.
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Constructing Dual Functions

Explicit construction
The Value Function
Generating Functions

Relaxations
Lagrangian Relaxation
Quadratic Lagrangian Relaxation
Corrected Linear Dual Functions

Primal Solution Algorithms
Cutting Plane Method
Branch-and-Bound Method
Branch-and-Cut Method

For the remainder of this part of the talk, we consider the instance (MILP).
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Gomory’s Procedure

There is a Chvátal function that is optimal to the subadditive dual of an ILP with
RHSb such thatz(b) > −∞.

The procedure:
In iterationk, we solve the following LP

z(b)k−1 = min cx
s.t. Ax = b

∑n
j=1 f i(aj)xj ≥ f i(b) i = 1, ..., k− 1

x ≥ 0

Thekth cut,k > 1, is dependent on the RHS and written as:

f k(d) =

⌈

m
∑

i=1

λk−1
i di +

k−1
∑

i=1

λk−1
m+i f

i(d)

⌉

where λk−1 = (λk−1
1 , ..., λk−1

m+k−1) ≥ 0
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Gomory’s Procedure (cont.)

Assume thatb is such thatz(b) > −∞ and the algorithm terminates afterk + 1
iterations.

If uk is the optimal dual solution to the LP in the final iteration, then

Fk(d) =
m

∑

i=1

uk
i di +

k
∑

i=1

uk
m+i f

i(d),

is a Chvátal function withFk(b) = z(b) and furthermore, it is optimal to the
subadditive ILP dual problem.
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Gomory’s Procedure (cont.)

Example:Let b = 3. At first iteration, we add the constraint

⌈2/2⌉x1 + ⌈ − 2/2⌉x2 + ⌈1/2⌉x3 + ⌈ − 1/2⌉x4 ≥ ⌈3/2⌉

from the weightλ1 = 1/2, i.e., the cutx1 − x2 + x3 ≥ 2. After resolving, we get an
integer primal solution with the dual solutionu = (0, 1). Then the corresponding
optimal dual function is:

F1(d) = 0d + 1⌈d/2⌉ = ⌈d/2⌉

What does this mean?

Ralphs, et al. (COR@L Lab) BILP Northwestern University, January 21, 2011 51 / 76



Branch-and-Bound Method

Assume that the primal problem is solved to optimality.

Let T be the set of leaf nodes of the search tree.

Thus, we’ve solved the LP relaxation of the following problem at nodet ∈ T

zt(b) = min cx
s.t x ∈ St(b)

,

whereSt(b) = {Ax = b, x ≥ lt,−x ≥ −ut, x ∈ Zn} andut, lt ∈ Zr are the
branching bounds applied to the integer variables.
Let (vt, vt, vt) be

the dual feasible solution used to prune nodet, if t is feasibly pruned
a dual feasible solution (that can be obtained from it parent) to nodet, if t is
infeasibly pruned

Then,

FBB(d) = min
t∈T

{vtd + vtlt − vtut}

is an optimal solution to the generalized dual problem.
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Aggregated Lower Bounding Approximations

Note that we can combine dual functions to better approximate the value
function.

This is similar to what is done to approximate the LP value function in Bender’s
Decomposition.

F1: the set of dual functions obtained from single row relaxations

F2: the set of the dual functions obtained from primal solutionprocedures for
eachb ∈ U ⊂ Rm whereU is some collection of right-hand sides.

Then, we call the dual functionF defined as

F(d) = max
f∈F1∪F2

{f (d)} ∀d ∈ Rm

a global approximation of the value function.
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Upper Bounding Approximations

Just like the lower bounding approximations, we are interested in a function that
is a valid upper bound for the value function.

Since upper bounds are closely related to feasibility, it isharder to obtain such a
function than to obtain dual/lower bounding functions.

One possible way is to consider the maximal subadditive extension result.

If f (d) ≥ z(d) forall d ∈ [0, q], then any extension off from [0, q] to Rm
+ is an

upper bounding function.
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Upper Bounding Approximations (cont.)

Another way is to consider the continuous relaxation of the primal instance.
Assume that{u ∈ Rm | uAC ≤ cC} is not empty and bounded.
Let zC(d) = max{vd | v ∈ V} whereV is the set of extreme points of dual polytope.
Then,zC(d) ≥ z(d) ∀d ∈ Rm.

Furthermore, we can movezC to a given right hand sideb to obtain strong upper
bounding functions.

Theorem 4Let x∗ be an optimal solution to the primal problem with right-handsideb.
Define the functionf as

f (d) = cI x
∗
I + zC(d− AI x

∗
I ) ∀d ∈ Rm.

Then,f (d) ≥ z(d) ∀d ∈ Rm with f (b) = z(b), and hence, is a strong upper
bounding function atb.
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Example

min 3x1 + 7
2x2 + 3x3 + 6x4 + 7x5 + 5x6

s.t 6x1 + 5x2 − 4x3 + 2x4 − 7x5 + x6 = b and
x1, x2, x3 ∈ Z+, x4, x5, x6 ∈ R+.

(SP)

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28-2-4-6-8-10-12-14-16
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z

b1 b2 b3 b4 b5

f1

f2

f3

f4 f5

Figure:Upper bounding functions obtained at right-hand sidesbi , i = 1, . . . , 5.
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Aggregated Upper Bounding Approximations

LetFU be the set of upper bounding functions obtained for eachb ∈ U ⊂ Rm where
Ui s some collection of right-hand sides. Then

F(d) = min
f∈FU

{f (d)} ∀d ∈ Rm

would be a global upper approximation of the value function.
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A Branch and Cut Algorithm

Putting all of this together, we propose a branch-and-boundapproach.

Components

Bounding methods (⇐ this talk)

Branching methods (⇐ this talk)

Search strategies

Preprocessing methods

Primal heuristics

In the remainder of the talk, we address development of thesecomponents.
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Lower Bounds

Lower bounds can be obtained by relaxing the value function constraint.

1 2 3 4 5 6 7 8

1

2

3

4

5
F

x

y

F I

max c1x + d1y

subject to A1x ≤ b1

G2y ≥ b2 − a2x

d2y ≤ z̄LL(b
2 − A2x)

x ∈ X, y ∈ Y,

wherēzLL is anupper approximationof the value function of the lower-level problem.

The upper approximation̄zLL is assumed to be piecewise linear and generated
dynamically.

If the number of pieces is “small,” we can reformulate the above in the usual way
using integer variables.
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Bilevel Feasibility Check

Let (x̂, ŷ) be a solution to the lower bounding problem.

We fix x = x̂ and solve the lower-level problem

min
y∈P I

L(x̂)
d2y (20)

with the fixed upper-level solution̂x.

Let y∗ be the solution to (20).

(x̂, y∗) is bilevel feasible⇒ c1x̂ + d1y∗ is a valid upper bound on the optimal value
of the original MIBLP

Either
1 d2ŷ = d2y∗ ⇒ (x̂, ŷ) is bilevel feasible.
2 d2ŷ > d2y∗ ⇒ (x̂, ŷ) is bilevel infeasible.

What do we do in the case of bilevel infeasibility?
Generate a valid inequality violated by(x̂, ŷ).
Improve our approximation of the value function so that(x̂, ŷ) is no longer feasible.
Branch on a disjunction violated by(x̂, ŷ).
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Bilevel Feasibility Cut (Pure Integer Case)

Let

A :=

[

A1

A2

]

, G :=

[

0
G2

]

, and b :=

[

b1

b2

]

.

A basic feasible solution(x̂, ŷ) ∈ ΩI to the lower bounding problem is the
uniquesolution to

a′i x + g′i y = bi, i ∈ I

whereI is the set of active constraints at(x̂, ŷ).

This implies that
{

(x, y) ∈ ΩI |
∑

i∈I

a′i x + g′i y =
∑

i∈I

bi

}

=
{

(x̂, ŷ)
}

and
∑

i∈I a′i x + g′iy ≤
∑

i∈I bi is valid forΩ.
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Bilevel Feasibility Cut (cont.)

A Valid Inequality
∑

i∈I a′i x + g′i y ≤
∑

i∈I bi − 1 for all (x, y) ∈ ΩI \ {(x̂, ŷ)}.

max
x

min
y

{y | −x + y ≤ 2,−2x− y ≤ −2, 3x− y ≤ 3, y ≤ 3, x, y ∈ Z+} .

1 2 3

2

3

1

x

y

−x + 2y ≤ 5

−x + 2y ≤ 4

This yields a finite algorithm in the pure integer case.
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Value Function Disjunction (Single Constraint Case)

0
d

d∗

f(d∗, ηC)

f(d∗, ζC)

For anyd ≤ d∗,

z(d) ≤ max{f (d∗, ζC), f (d∗, ηC)} = f (d∗, ζC).

Similarly, for anyd ≥ d∗,

z(d) ≤ max{f (d∗, ζC), f (d∗, ηC)} = f (d∗, ηC).
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Value Function Disjunction (cont.)

Thus, we have the following disjunction.

Bilevel Feasibility Disjunction

b2 − A2x ≤ b2 − A2x̂ AND d2y ≤ f (b2 − A2x̂, ζC)

OR

b2 − A2x ≥ b2 − A2x̂ AND d2y ≤ f (b2 − A2x̂, ηC).

Such a disjunction can be used to eitherbranchor cutwhen solutions(x̂, ŷ) ∈ ΩI such
thatŷ 6∈ MI (x̂) are found.
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Algorithms Based on Lower Approximation

It is more difficult to develop algorithms based on lower approximations in the
general case.

The main challenge is that we need to know the lower level solution at each step.

This is different than in the case of recourse problems.

We are confident that it is possible to overcome these challenges, but these ideas
are preliminary.
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Implementation

The Mixed Integer Bilevel Solver (MibS) implements the branch and bound
framework described here using software available from theComputational
Infrastructure for Operations Research (COIN-OR) repository.

COIN-OR Components Used

TheCOIN High Performance Parallel Search(CHiPPS) framework to
perform the branch and bound.

TheCOIN Branch and Cut(CBC) framework for solving the MILPs.

TheCOIN LP Solver(CLP) framework for solving the LPs arising in the
branch and cut.

TheCut Generation Library(CGL) for generating cutting planes within
CBC.

TheOpen Solver Interface(OSI) for interfacing with CBC and CLP.
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What Is Implemented

MibS is still in its infancy and is not fully general. Currently, we have:

Bilevel feasibility cuts(pure integer case).

Specialized methods (primarily cuts) forpure binary at the upper level.

Specialized methods forinterdiction problems.

Disjunctive cutsbased on the value function for lower-level problems with a
single constraint.

Severalprimal heuristics.

Simplepreprocessing.
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Preliminary Results from Knapsack Interdiction

Maximum Infeasibility Strong Branching
2n Avg Nodes Avg Depth Avg CPU (s) Avg Nodes Avg Depth Avg CPU (s)
20 359.30 8.65 9.32 358.30 8.65 11.07
22 658.40 9.85 18.50 658.20 9.85 18.92
24 1414.80 10.85 46.03 1410.80 10.75 46.46
26 2725.00 12.05 97.55 2723.50 12.05 100.17
28 5326.40 12.90 214.97 5328.60 12.95 220.26
30 10625.00 14.05 482.70 10638.00 14.10 538.32

Interdiction problems in which the lower-level problems are binary knapsack
problems.

Data was taken from theMultiple Criteria Decision Makinglibrary and modified
to suit our setting.

Results for each problem size reflect the average of 20 instances.

These instances were running using the interdiction customization.
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Preliminary Results from Assignment Interdiction

Instance Nodes Depth CPU (s)
2AP05-1 6203 33 290.25
2AP05-2 3881 32 384.97
2AP05-3 3909 32 205.93
2AP05-4 2441 36 102.66
2AP05-5 3505 33 119.18
2AP05-6 2031 35 80.31
2AP05-7 2957 29 153.02
2AP05-8 3549 32 224.77
2AP05-9 2271 33 111.13
2AP05-10 3299 31 211.07
2AP05-11 707 33 35.13
2AP05-12 407 18 29.51
2AP05-13 391 18 23.80
2AP05-14 3173 28 261.08
2AP05-15 2509 32 127.05
2AP05-16 1699 29 44.61
2AP05-17 5417 29 201.34
2AP05-18 5785 32 176.67
2AP05-19 2259 32 79.70
2AP05-20 2585 31 77.35
2AP05-21 6039 33 161.44
2AP05-22 2479 29 48.06
2AP05-23 1519 25 49.40
2AP05-24 15 5 1.32
2AP05-25 3857 31 115.97

Here, the lower-level problems are binary assignment problems.

Data also taken fromMultiple Criteria Decision Makinglibrary.

Problems have 50 variables and 45 constraints.
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Conclusions and Future Work

Preliminary testing to date has revealed that these problems can be extremely
difficult to solve in practice.

What we have implemented so far has only scratched the surface.

Currently, we are focusing on special cases where we can get traction.
Interdiction problems
Stochastic integer programs

Much work remains to be done.

Please join us!
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