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Outline

@ Research Overview
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)

A standard mathematical program models a set of decisions toade
simultaneouslyy asingledecision-maker (i.e., with singleobjective).
Many decision problems arising both in real-world applimas$ and in the theory
of integer programming involve

o multiple, independent decision-makéBMs),

* multiple, possibly conflicting objectiveand/or

@ hierarchical/multi-stage decisions
Modeling frameworks

¢ Multiobjective Programming= multiple objectives, single DM

@ Mathematical Programming with Recoursemultiple stages, single DM

@ Multilevel Programming< multiple stages, multiple objectives, multiple DMs
Multilevel programminggeneralizes standard mathematical programming by
modeling hierarchical decision problems, such as Staekglgames.

Such models arises inramarkably wide array of applications
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Nash and Stackelberg Games

o Many game theoretic models can be formulated as optimizatioblems
involving multiple decision makers.

o In aNash gamethe players are treated as equals and take simultanedms. act

@ Computationally, one often wishes to findNash equilibriumin which the
action of each player is optimal, given the actions of aleothlayers.

@ In aStackelberg gaméhere is a dominant player, called tleder, who acts
first and other players react.

@ In this case, one is concerned with determining the leadecssion, given the
assumption that thillowerswill react optimally.

@ This can often be modeled as a bilevel program.
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Bilevel (Integer) Linear Programming

Formally, abilevel linear progranis described as follows.
@ x € X C R™ are theupper-level variables
@ yc Y C R™ are thelower-level variables

Bilevel (Integer) Linear Program
max{c'x+d'y | x e Py N X,y € argmin{d®y |y € P.(X) N Y}} (MIBLP)

Theupper-andlower-level feasible regiorare:

Py ={xe R, |Ax<b'} and
PL(x) = {ye Ry | Gy > b® — A%} . J

We consider the general case in whic¢h= 7P x R™~PrandY = ZP2 x R~ P2,
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Notation

Q' = {(xy) € (XxY)|xePy,yecP (X}
Q = {(x,y) € (R™ x R™) | x € Py,y € PL(X)}
M' (x) = argmin{d®y |y € (PL(x) N Y)}
F = {(x,y) | xe (PunX),ye M (x)}
F = {(x,y) | x€ Pu,y € argmin{d? | y € P.(x)} }

@ Underlying bilevel linear program (BLP):

max c'x + dly
xy)eF

@ Underlying mixed integer linear program (MILP):

max ctx + dly
(xy)eQ!

@ Underlying linear program (LP):

max ctx + dly
(xy)eQ
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(Standard) Mixed Integer Linear Programs

o In parts of the talk, we will need to consider a (standan®ed integer linear
program(MILP).
@ To simplify matters, when we discuss a standard MILP, it adlof the form

min{c"x | x € PN (ZP x R™P)}, (MILP)

whereP = {x € R | Ax=b},Ac Q™" be Q™ ce Q"
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Basic Assumptions

o For the remainder of the talk, we consider decision problemhich there are
two DMs, aleaderor upper-leveDM and afollower or lower-levelDM.

o We assuméndividual rationalityof the two DMs, i.e., the leader can predict the
follower’s reaction to a given course of action.
@ For simplicity, we also assume that for every action by tlaelés, the follower
has a feasible reaction.
o The follower may in fact have more than one equally favorabéetion to a given
action by the leader.
o These alternatives may not be equally favorable to the teade
¢ We assume that the leader may choose among the followesinatives.
o This assumption is reasonable if the players havesati-cooperativerelationship.
@ We assume the feasible s&t is nonempty and compact to ensure solutions
exist.
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© Introduction
o Motivation
@ Setup
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Overview of Practical Applications

o Hierarchical decision systems
o Government agencies
o Large corporations with multiple subsidiaries
o Markets with a single “market-maker.”
+ Decision problems with recourse
@ Parties in direct conflict
@ Zero sum games
o Interdiction problems
o Modeling “robustness’leader represents external phenomena that cannot be
controlled.
@ Weather
o External market conditions
o Controlling optimized systemgollower represents a system that is optimized |
its nature.
o Electrical networks
o Biological systems
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Example: Electricity Networks (Bienstock and Verma

(2008))

@ As we know, electricity networks operate according to pples of optimization.
@ Given a network, determining the power flows is an optimaaproblem.

@ Suppose we wish to know the minimum number of links that nedzktremoved
from the network in order to cause a failure.

@ This can be viewed as a Stackelberg game.
@ Note that neither the leader nor the follower is “cognizantthis case.
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Overview of Technical Applications

o Bilevel structure is inherent in many decision problems dwaur withinbranch
and cutand other algorithms based on disjunctive methods.

o In many cases, we would like to choose the “most effectivsjutiction
according to some criteria.

@ The choice of disjunction is thus an optimization problewt kself has bilevel
structure.

@ The bilevel nature arises from the fact that the effectigsrod the disjunction is
usually evaluated by solving another optimization problem

o Examples

o Choosing the valid inequality with the largest violation.
@ Choosing a branching disjunction that achieves maximahtidmprovement.
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Example: Capacity Constraints for CVRP

o In the Capacitated Vehicle Routing Problem (CVRP),dhpacity constraints
are of the form
> X>20(S) VSCN, [§>1, (1)

e={i,j} €E
iES,|ZS

whereb(S) is any lower bounan the number of vehicles required to serve
customers in seb.
@ By definingbinary variables
o y; = 1if customeri belongs tdS, and
o 7 — 1if edgee belongs toj(S),
we obtain the following bilevel formulation for the sepaoatproblem:

min> " Keze — 2b(S) (2)
eckE
Ze 2> Vi — Y Vee E 3)
Ze > Y — Vi VecE (4)

b(S) = max{b(S) | b(S) is a valid lower bouny (5)
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Example: Capacity Constraints for CVRP (cont.d)

If the bin packing problem is used in the lower-level, theriafation becomes:

minZkeze —2b(S) (6)
ze:; Yi — Y] ve={i,j} (7
Ze> Y — Vi ve={i,j} (8)
b(S) = mingn: hy 9)

(=1
ivvf Y VieN (10)
SdiM < Kh, (=1,...,n, (11)
ieN

where we introduce the additional binary variables
o w' = 1if customer is served by vehiclé, and
@ h, = 1if vehicle/ is used.
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Outline

© Applications
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Recourse Problems

o If d* = —d?, we can view this as aathematical program with recourse
o We can reformulate the bilevel program as follows.

min{—c’x + Q(X) | x € Py N X}, (12)J

where

Q(x) = min{dy |y € P.(x) N Y}. (13)J

@ The functionQ is known as thevalue functiorof the recourse problem.
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Recourse Problems with Continuous Second Stage

If Y =R™, itis well-known by LP duality that

Q(x) = max{u(b? — A%) | uG? < d,u € R™2}, (14)J

so we can further reformulate (12) as

min{c’x + z| x € Py N X,z> u'(b? — A%X) Vi € D}, (15)J

whereD is a set indexing the extreme points of the dual polyhedron

{ue R? | uG > d'}. (16)J
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Benders Decomposition

@ We can then solve (12) by Benders decomposition.
@ This amounts to solving (15) by cut generation.

@ The value function of the lower-level problem is convex ia tipper-level
variables, which is what makes the problem tractable.
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Two-Stage Stochastic Integer Programs

o Consider the two-stage stochastic mixed integer program

min{c'x 4+ E:Q¢(X) | x € Py N X}, (17)J

where

Qc(x) = min{d?y | y € Y, Gy > w(¢) - A%}, (18)

¢ is a random variable from a probability spgée %, P), and for eachi € =,
w(g) € R™.

o If the distribution of¢ is discrete and has finite support, then (17) is a bilevel
program.
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Continuous Second Stage

o In general, ifY = R™, then the lower-level problem can be replaced with its
optimality conditions.
@ The optimality conditions for the lower-level optimizatiproblem are

G%y > b? — A%
uG? < d?
u(b®> — G - A’) =0
(d> —uG)y =0
uyeR,

o WhenX = R™, this is a special case of a class of non-linear mathematical
programs known asiathematical programs with equilibrium constraints
(MPECs).

@ An MPEC can be solved in a number of ways, including convaiitito a
standard integer program.

@ Note that in this case, the value function of the lower-lgreblem is piecewise
linear, but not necessarily convex.
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Other Cases

Pure integer.

Positive constraint matrix at lower level.

Binary variables at the upper and/or lower level.
Interdiction problems

Mixed Integer Interdiction

max min dy (MIPINT)
xeP}, yePL(x)

¢ & ¢ ¢

where

Pb = {xeB"|Ax < b'}
PL(x)={yeZP xR" P |Gy >b*y<ule—x)}.

o The case where follower’s problem has network structuralied the
network interdiction problerand has been well-studied.

o The model above allows for lower-level systems describegdmeral MILPs.
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© Special Cases
@ Recourse Problems
@ Continuous Second Stage
@ Other Cases
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The General Case

@ When some/all of the variables are discrete, the problerarhes more
complex, both practically and theoretically.

o Many of the ideas from these special cases can be extémgeiciple.
o However, it’s very difficult to obtain anything tractablepractice

@ An obvious question is whether we can generalize any of the ve
well-developed methodology we know for solving standard.RH.

@ We can do so to a certain extent, but the proper generalimasice not obvious.
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Complexity

o Itis perhaps to be expected that general BMILPs are in ardiffecomplexity
class than standard MILPs.

@ This is because checking feasibility is itself an NP-cortgproblem for
BMILPs.

o Even the case in whick = R} andY = R’ is NP-complete.

@ Bilevel programming is (apparently)-complete though we do not have a
formal proof for the general case.

@ The class ) is one step higher in the so-called “polynomial-time hiehg”
than the class NP{ =1).

@ Roughly speaking, this class consists of problems thatdoeilsolved in
nondeterministic polynomial time, given an oracle for gesbs in NP.
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Example

Consider the following instance of (MIBLP) from Moore andrB#1990).

5 T
max X+ 1 F oo
XEZ o conv(Q)
conv(FT)

subjectto y € argmin{y : 25x — 20y > —30
—x—2y>—-10 3
—2x+y> —15

2x+ 10y > 15

YEZ}

From the figure, we can make several observations:
Q@ FCQ F CcqQ,andQ € Q
QF¢r
© Solutions to (MIBLP) do not occur at extreme pointscofi( Q')
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Properties of MIBLPs

In this example:

@ Optimizing overF yields theintegersolution(8, 1), with the upper-level
objective valuel8.

9 Imposing integrality yields the solutidi2, 2), with upper-level objective value
22

From this we can make two important observations:

© The objective value obtained by relaxing integrality is asalid bound
on the solution value of the original problem,

@ Even when solutions tmax, .- » ¢'x + d'y are inF', they are not
necessarily optimal.

Thus, some familiar properties from the MILP case do not ihelce.
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Understanding the Structure

@ The key to understanding the structure of an MIBLP is to atersihe value
function associated with the lower-level problem.

o Thisvalue functiorof the instance (MILP) is a function: R — R U {£o0}
defined as follows:

MILP Value Function

— @i @F
Z(d) = Xrensl(r;)c X, (29)

where, for a given right-hand side vectbe R™,

Sd) = {xe Z° x R7" | Ax=d}. J

o In what follows, we will set© = {d € R™ | §(d) +# 0}.
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Example: Value Function

Z(d) =min  3x + 23 + X
st X1— 3% +x—x=d and
X1,X2 € Zoy, X3, %4 € R

z(d)

Ralphs, et al. (COR@L Lab) BILP Northwestern University, January 21, 2011 29/



Value Function Reformulation

If we knew the value function explicitly, we could reformtdgMIBLP) as

; Foaes max c'x+dly
subjectto Alx < bt
G?%y > b? — A%x
, d?y =z, (b* — A%X)
S XEXyeY,

wherez | is the value function of the lower-level problem.
@ This s, in principle, a standard mathematical program.
o Itis easy to see why relaxing integrality does not yield ad/Bbund.

@ In this case, we are effectively replacing with the value function of the LP
relaxation (more on this soon).
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Properties of the Value Function

o Itis subadditive ove.
@ lItis piecewise polyhedral.

@ For an ILP, it can be computed by a finite number of limited agiens on
elements of the RHS:

(i) rational multiplication

(i) nonnegative combination; Chvatal fcns.
(i) rounding

(iv) taking the maximum

Gomory fens.
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Properties of the Value Function (cont.)

@ There is a one-to-one correspondence between ILP instandeSomory
functions.

@ TheJeroslow Formulashows that the value function of an MILP can be
constructed from the value function of an associated ILP.

@ The value function of the earlier example is
3 |2d] |2d] 3[2d]
P max{ [Tw ) (TW } +55+2,

gmax{| 5] [ 5]} -

z(d) = min
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Jeroslow Formula

We consider again the instance (MILP). Let the&atonsist of the index sets of dual
feasible bases of the linear program

1 1
mm{mccxc : MAcxc =b,x> 0}

whereM ¢ 7, such that for anf € &, MAZ'al € Z™ forall j < |.

Jeroslow Formula

Theorem 1 There is ag € ¢™ such that

Z(d) = rE‘neng( |d]g) + ve(d — |d]g) vd € R™ with S(d) # 0,

where forE € &, |d|z = Ac| Az 'd| andve is the corresponding basic feasible
solution.
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Approximating the Value Function

@ In general, it is difficult to construct the value functiorpdixitly.

o We therefore propose to approximate the value function tineeupper or lower
bounding functions

Derived by considering the value function @flaxationsof the original
problem or by constructindual functions= Relax constraints

Upper bounds
Derived by considering the value function @fstrictions of the original
problem=- Fix variables
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The LP Relaxation

@ The value function of the LP relaxation of the original prerl provides an easy
lower bound.
Fip(d) = max{vd: vA < c}.
veRM

@ By linear programming duality theory, we have-(d) < z(d) foralld € R™.
@ Of coursefF | p is not necessarily strong.
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Example: LP Dual Function

Fip(d) = min  vd,
st 0>v> -1 and
veR,
which can be written explicitly as

0, d<0
FLP(d)_{ —3d, d>0

Zd)

Fue(d)
3
5
2
2
3
2
1
1
2

-4 7 3 5 2 3 il 1 0 1 1 3 2 5 3 7 4 d
T2 T2 T2 T2 2 2 2 2

4
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Relaxing Linear Constraints

Consider thevalue functions of each single row relaxation
z(q) =min{cx|ax=qg,x€ Z xR "} qeR,ieM={1,...,m}

wherea; is thei™ row of A.

Theorem 2 LetF(d) = U;Z’\iAX{Z@(di)}, d=(dy,...,dy), d € R™ ThenF is
|
subadditive andF(d) < z(d) vd € R™.

We know a lot about the structure of the value function of Efgw relaxations.
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ForSC M, w € R¥, set

Gs(g,w) = min{cx | wasx = wg, x € Z', x RT"} vq € RIS

Theorem 3 Let
Fs(w,d) = max{Gg(ds,w), max{a(di)}} ,deR™
ieM\S

Fsis subadditive and(d) > Fs(w, d) foranyw € RIS, d ¢ R™,

As with cutting planes, different aggregation procedurespmssible.
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Dual Functions

o A dual functionF : R™ — R is one that satisfies(d) < z(d) forall d € R™.
@ This is a generalization of the concept of dual solution ftomLP case.
@ How to select such a function?

@ We generally choose one for whi€lib) ~ z(b) for some particulab ¢ R™ of
interest.

This results in the following dual problem:

(]

7o = max{F(b): F(d) < z(d), de R™ F e T}

whereT™ C {f | : R"—=R}
@ We callF* strongfor this instance if-* is afeasibledual function and
F*(b) = z(b).
This dual instance always has a solutienthat is strong if the value function is
bounded and™ = {f | f : R™—R}. Why?

(]
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The Subadditive Dual

By considering that

F(d) <zd),deR™ <« F(d)<cx, xe &), deR"™
< F(AX) <cx, xeZ,

the generalized dual problem can be rewritten as

zp = max{F(b) : F(AX) <cx, xe Z xR}™", Fe T™}.

Can we further restrict ™ and still guarantee a strong dual solution?
@ The class of linear functions? NO!
@ The class of convex functions? NO!
@ The class of sudadditive functions? YES!
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The Subadditive Dual

@ Let a functionF be defined over a domain ThenF is subadditive if
F(Vl) + F(Vz) > F(Vl + V2)VV1, Vo,Vi + Vo €V,

o Note that the value functionis subadditive ove®. Why?

o If T™=T"= {F is subadditive F : R™—R, F(0) = 0}, we can rewrite the
dual problem above as tlseibadditive dual

zp=max F(b

where the functiori is defined by

_ F(od
F(d) = lim sup% vd e R™.

§—0t

@ Here,F is theupper d-directional derivativef F at zero.
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Example: Value Function Revisited

Z(d) =min  3x + 23 + X
st X1— 3% +x—x=d and
X1,X2 € Zoy, X3, %4 € R

z(d)
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Example: Upper D-directional Derivative

@ The upper d-directional derivative can be interpreted astbpe of the value
function in directiond at 0.

o For the example, we have

() ——
2d) ——

I

nIw
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Example: Subadditive Dual

For our IP instance, the subadditive dual problem is

max

m T
—_—

'I'I
o
—~

R RN R T

M T
m —
-
-H\_/\_/\_/\_/\_/
VANIVANIVANRPAN
= N Onie

and we have the following feasible dual functions:

@ Fi(d) = ¢ is an optimal dual function foo € {0. 1.2, ...}.

@ F(d) = Ois an optimal function fob € {...., -3, -2, 0}.

Q Fs(d) = max(i[d — 19917 2d — 2[d — -1} is an optimal function for
be {0, UL U2 U..}.

© Fu(d) = max(3[% - A5 —d -

2d szfadwfzfad]}
3

5 + 9} is an optimal
U [75*0]}
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Example: Feasible Dual Functions

2d) ———
E(d)f=r="=i=
3
5
2
2 - =D
3 -
2
1 - =D
1 - =D
- = > 2
- - -
- - -
- P d
7 5 - 3 1 1 3
4 I 3 -3 R 1 1 0 z 1 g 2 g 3 Z 4

@ Notice how different dual solutions are optimal for soméntipand sides and
not for others.

@ Only the value function is optimal for all right-hand sides.
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Properties of the Subadditive Dual

Using the subadditive dual, we can generalize many of thpasties of the LP dual.

@ Weak/Strong Duality
o Farkas Lemma
@ Optimality conditions (complementary slackness)
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Reformulation with Optimality Conditions

In principle, we can use subadditive duality to obtain ojatity conditions for the
lower-level problem (reformulation shown here is for theginteger case).

max c'x +dly
X,y,F

subjectto Alx < bt
A2+ G?y > b?
F@) < Yi=1,...,m
(F(@) -y =0, Yi=1,....n

n2
> F(@y = F(o? — A%)
=1

XeEZtyeZ? Felm™.

This is analogous to the reformulation in the continuougchst is intractable in
general.
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Constructing Dual Functions

o Explicit construction

o The Value Function
o Generating Functions

@ Relaxations
o Lagrangian Relaxation
o Quadratic Lagrangian Relaxation
o Corrected Linear Dual Functions
@ Primal Solution Algorithms

¢ Cutting Plane Method
@ Branch-and-Bound Method
o Branch-and-Cut Method

For the remainder of this part of the talk, we consider th&aimse (MILP).
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Gomory’s Procedure

@ There is a Chvatal function that is optimal to the subadditiual of an ILP with
RHSb such thatz(b) > —oc.

@ The procedure:
In iterationk, we solve the following LP

z(b)*"1 = min cx
st. Ax=D

S i)y >fib)  i=1..k-1
x>0

@ Thek" cut,k > 1, is dependent on the RHS and written as:
Z A+ ZAﬁ%}f where X1 = (1 k1 )y >0

9 mt-k—1
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Gomory’s Procedure (cont.)

@ Assume thab is such thatz(b) > —oo and the algorithm terminates after- 1
iterations.

o If uXis the optimal dual solution to the LP in the final iteratidmg

m k
F() = S+ 3 (@), J
i=1 i=1

is a Chvatal function witti(b) = z(b) and furthermore, it is optimal to the
subadditive ILP dual problem.

Ralphs, et al. (COR@L Lab) BILP Northwestern University, January 21, 2011 50/



Gomory’s Procedure (cont.)

Example:Letb = 3. Atfirst iteration, we add the constraint
[2/21xa 4 [ = 2/2]x2 + [1/2]x3 + [ — 1/2]xs = [3/2]
from the weight\; = 1/2, i.e., the cut; — x, + x3 > 2. After resolving, we get an

integer primal solution with the dual solutien= (0, 1). Then the corresponding
optimal dual function is:

F(d) = 0d + 1[d/2] = [d/2] ]

What does this mean?
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Branch-and-Bound Method

@ Assume that the primal problem is solved to optimality.
o LetT be the set of leaf nodes of the search tree.
@ Thus, we've solved the LP relaxation of the following prahlat node € T

Z(b) = min cx
st xe S(b)’

whereS;(b) = {Ax=Db,x > I', =x > —u',x € Z"} andu', |' € Z" are the
branching bounds applied to the integer variables.
o Let(V', V', V") be
o the dual feasible solution used to prune nodét is feasibly pruned

o adual feasible solution (that can be obtained from it paremodet, if t is
infeasibly pruned

Then,

Fes(d) = min{vid + vi' - vu} J

is an optimal solution to the generalized dual problem.
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Aggregated Lower Bounding Approximations

@ Note that we can combine dual functions to better approxarie value
function.

@ This is similar to what is done to approximate the LP valuecfiom in Bender’s
Decomposition.

@ 7. the set of dual functions obtained from single row relaxadi

@ 5. the set of the dual functions obtained from primal solupoacedures for
eachb € U ¢ R™whereU is some collection of right-hand sides.

@ Then, we call the dual functioR defined as

— m
F(d) = fen}ﬁy(rz{f(d)} vd e R

a global approximation of the value function.
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Upper Bounding Approximations

@ Just like the lower bounding approximations, we are inteces a function that
is a valid upper bound for the value function.

@ Since upper bounds are closely related to feasibility, hitgigder to obtain such a
function than to obtain dual/lower bounding functions.

@ One possible way is to consider the maximal subadditivensibe result.

@ If f(d) > z(d) forall d € [0, g], then any extension dffrom [0, g] to R is an
upper bounding function.
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Upper Bounding Approximations (cont.)

@ Another way is to consider the continuous relaxation of thieal instance.

e Assume thafu € R™ | uAc < cc} is not empty and bounded.
o Letzc(d) = max{vd | v € V} whereV is the set of extreme points of dual polytope
o Then,zc(d) > z(d) vd € R™.

@ Furthermore, we can move to a given right hand sideto obtain strong upper
bounding functions.

Thquf@(‘ébe an optimal solution to the primal problem with right-hasideb.
Define the function as

f(d)=cx +zc(d—Ax) vdeR™

Then,f(d) > z(d) Vd € R™with f(b) = z(b), and hence, is a strong upper
bounding function ab.
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Example

min  3x, + 2Xp + 3X3 + 6X4 + 7X5 + 5X6
St B +5% —4x3+2x4 — X5 + X = b and (SP)
X1, X0, X3 € Ziy X4, X5, X6 € R .

18
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10

-16 -14 -12 -10 8 -6 -4 -2 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28
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by by by by bg

Figure: Upper bounding functions obtained at right-hand sides= 1, ..., 5.
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Aggregated Upper Bounding Approximations

Let 7V be the set of upper bounding functions obtained for éach)  R™ where
Ui s some collection of right-hand sides. Then

F(d) = f@}rl{f(d)} vd € R™

would be a global upper approximation of the value function.
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A Branch and Cut Algorithm

@ Putting all of this together, we propose a branch-and-baypdoach.

@ Bounding methods< this talk)
@ Branching methods< this talk)
o Search strategies

o Preprocessing methods

o Primal heuristics

@ In the remainder of the talk, we address development of tbesgonents.
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Lower bounds can be obtained by relaxing the value functomstraint.

max c'x +dly

) e subjectto Alx < bt

G?%y > b? — a’x

d?y <z (b* — A?X)
xeX,yevy,

wherez | is anupper approximatioof the value function of the lower-level problem.

@ The upper approximation, is assumed to be piecewise linear and generated
dynamically.

o If the number of pieces is “small,” we can reformulate theabio the usual way
using integer variables.

Ralphs, et al. (COR@L Lab) BILP Northwestern University, January 21, 2011 60/



Bilevel Feasibility Check

o Let (%, 9) be a solution to the lower bounding problem.
@ We fix x = % and solve the lower-level problem
min d?%y (20)
YEPL(R)
with the fixed upper-level solutioh
@ Lety* be the solution to (20).

s (% y")is bilevel feasible=- ¢' + d'y" is a valid upper bound on the optimal value
of the original MIBLP

o Either
@ %y = d?y* = (%,9) is bilevel feasible.
Q d%9 > d?y* = (&,9) is bilevel infeasible
@ What do we do in the case of bilevel infeasibility?
¢ Generate a valid inequality violated b, ).
o Improve our approximation of the value function so tffaty) is no longer feasible.
@ Branch on a disjunction violated Ky, 9).
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Bilevel Feasibility Cut (Pure Integer Case)

Let . s
A= |:22:| 5 G .= {C(;)z:| 5 and b = {22:| .

A basic feasible solutioni%, 9) € Q' to the lower bounding problem is the
uniquesolution to
ax+gy=»hb, i€l

wherel is the set of active constraints(&t §).

This implies that

{oeea | Taxray=nf-{xn)

i€l iel

andy",_ alx+gy < >, b is valid for Q.
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Bilevel Feasibility Cut (cont.)

A Valid Inequality
Yie aX+ gy < 3 b — Lforall (x,y) € @'\ {(%,9)}.

maxmin{y | —x4+y<2,-2x—y< -23x—-y<3,y<3 xyeZ.}.
Xy

-7 w42 <h

- —r+2y <4

This yields a finite algorithm in the pure integer case.
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Value Function Disjunction (Single Constraint Case)

For anyd < d*,
2(d) < max{f(d*, ¢%),f(d", n%)} = F(d", ¢C).
Similarly, for anyd > d*,

2(d) < max{f(d*, ¢%),f(d*,n°)} = f(d*, n°).
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Value Function Disjunction (cont.)

Thus, we have the following disjunction.

Bilevel Feasibility Disjunction

b2 — A’x < b?> — A’k AND d?y < f(b? — A% ¢©)
OR
b2 — A% > b? — A’k AND d?y < f(b? — A%, 7).

Such a disjunction can be used to eitheanchor cutwhen solutionss, §) € Q' such
thaty ¢ M'(%) are found.
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Algorithms Based on Lower Approximation

o Itis more difficult to develop algorithms based on lower apgmations in the
general case.

@ The main challenge is that we need to know the lower leveltgwiat each step.

@ This is different than in the case of recourse problems.

@ We are confident that it is possible to overcome these chgdlerbut these ideas
are preliminary.
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Outline

© Algorithms
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Implementation

The Mixed Integer Bilevel Solver (MibS) implements the tohand bound
framework described here using software available fronCheaputational
Infrastructure for Operations Research (COIN-OR) repogit

COIN-OR Components Used

@ TheCOIN High Performance Parallel Sea@HiPPS) framework to
perform the branch and bound.

@ TheCOIN Branch and Cu{CBC) framework for solving the MILPs.

@ TheCOIN LP Solver(CLP) framework for solving the LPs arising in the
branch and cut.

@ TheCut Generation Librar¢(CGL) for generating cutting planes within
CBC.

@ TheOpen Solver Interfac@SI) for interfacing with CBC and CLP.
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What Is Implemented

MibsS is still in its infancy and is not fully general. Curréntwe have:

@ Bilevel feasibility cuty(pure integer case).
o Specialized methods (primarily cuts) foure binary at the upper level
@ Specialized methods fanterdiction problems

@ Disjunctive cutsbased on the value function for lower-level problems with a
single constraint.

Severaprimal heuristics
Simplepreprocessing

(]

©
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Preliminary Results from Knapsack Interdiction

Maximum Infeasibility Strong Branching
2n | Avg Nodes | Avg Depth | Avg CPU (s) | Avg Nodes | Avg Depth | Avg CPU (s)
20 359.30 8.65 9.32 358.30 8.65 11.07
22 658.40 9.85 18.50 658.20 9.85 18.92
24 1414.80 10.85 46.03 1410.80 10.75 46.46
26 2725.00 12.05 97.55 2723.50 12.05 100.17
28 5326.40 12.90 214.97 5328.60 12.95 220.26
30 | 10625.00 14.05 482.70 10638.00 14.10 538.32

@ Interdiction problems in which the lower-level probleme &inary knapsack
problems.

o Data was taken from thiglultiple Criteria Decision Makindibrary and modified
to suit our setting.

o Results for each problem size reflect the average of 20 iostan
@ These instances were running using the interdiction cugatian.
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Preliminary Results from Assignment Interdiction

Instance Nodes Depth CPU (s)
2AP05-1 6203 33 290.25
2AP05-2 3881 32 384.97
2AP05-3 3909 32 205.93
2AP05-4 2441 36 102.66
2AP05-5 3505 33 119.18
2AP05-6 2031 35 80.31
2AP05-7 2957 29 153.02
2AP05-8 3549 32 224.77
2AP05-9 2271 33 111.13
2AP05-10 3299 31 211.07
2AP05-11 707 33 35.13
2AP05-12 407 18 29.51
2AP05-13 391 18 23.80
2AP05-14 3173 28 261.08
2AP05-15 2509 32 127.05
2AP05-16 1699 29 44.61
2AP05-17 5417 29 201.34
2AP05-18 5785 32 176.67
2AP05-19 2259 32 79.70
2AP05-20 2585 31 77.35
2AP05-21 6039 33 161.44
2AP05-22 2479 29 48.06
2AP05-23 1519 25 49.40
2AP05-24 15 5 1.32
2AP05-25 3857 31 115.97

@ Here, the lower-level problems are binary assignment prabl
o Data also taken froriMultiple Criteria Decision Makindibrary.
@ Problems have 50 variables and 45 constraints.
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Conclusions and Future Work

o Preliminary testing to date has revealed that these prabtam be extremely
difficult to solve in practice.

o What we have implemented so far has only scratched the surfac

@ Currently, we are focusing on special cases where we canagdion.

@ Interdiction problems
@ Stochastic integer programs

@ Much work remains to be done.
@ Please join us!
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