Computational Integer Programming
Universidad de los Andes

Lecture 8

Dr. Ted Ralphy
Reading for This Lecture

- Wolsey Section 9.6
- Nemhauser and Wolsey Section II.6
- Linderoth and Ralphs “Noncommercial Software for Mixed-Integer Linear Programming”
Branch and Cut

• *Branch and cut* is an LP-based branch-and-bound scheme in which the linear programming relaxations are augmented by valid inequalities.

• The valid inequalities are generated dynamically using separation procedures.

• We iteratively try to improve the current bound by adding valid inequalities.

• In practice, branch and cut is the method typically used for solving difficult mixed-integer linear programs.

• **Computational component of branch and cut**

 – Preprocessing
 – Cut generation
 – Managing the LP relaxation
 – Search strategy
 – Branching strategy
 – Primal heuristics
Preprocessing and Probing

• Often, it is possible to simplify a model using logical arguments.
• Most commercial IP solvers have a built-in preprocessor.
• Effective preprocessing can pay large dividends.
• Let the upper and lower bounds on x_j be u_j and l_j.
• The most basic type of preprocessing is calculating implied bounds.
• Let (π, π_0) be a valid inequality.
• If $\pi_1 > 0$, then

$$x_1 \leq (\pi_0 - \sum_{j: \pi_j > 0} \pi_j l_j - \sum_{j: \pi_j < 0} \pi_j u_j) / \pi_1$$

• If $\pi_1 < 0$, then

$$x_1 \geq (\pi_0 - \sum_{j: \pi_j > 0} \pi_j l_j - \sum_{j: \pi_j < 0} \pi_j u_j) / \pi_1$$
Basic Preprocessing

- Again, let (π, π_0) be any valid inequality for S.
- The constraint $\pi x \leq \pi_0$ is redundant if
 \[
 \sum_{j: \pi_j > 0} \pi_j u_j + \sum_{j: \pi_j < 0} \pi_j l_j \leq \pi_0.
 \]
- S is empty (IP is infeasible) if
 \[
 \sum_{j: \pi_j > 0} \pi_j l_j + \sum_{j: \pi_j < 0} \pi_j u_j > \pi_0.
 \]
- For any IP of the form $\max \{cx | Ax \leq b, l \leq x \leq b\}, x \in \mathbb{Z}^n$,
 - If $a_{ij} \geq 0 \forall i \in [1..m]$ and $c_j < 0$, then $x_j = l_j$ in any optimal solution.
 - If $a_{ij} \leq 0 \forall i \in [1..m]$ and $c_j > 0$, then $x_j = u_j$ in any optimal solution.
Probing for Integer Programs

- It is also possible in many cases to fix variables or generate new valid
 inequalities based on logical implications.

- Consider \((\pi, \pi_0)\), a valid inequality for 0-1 integer program.

- If \(\pi_k > 0\) and \(\pi_k + \sum_{j:\pi_j < 0} \pi_j > \pi_0\), then we can fix \(x_k\) to zero.

- Similarly, if \(\pi_k < 0\) and \(\sum_{j:\pi_j < 0, j \neq k} \pi_j > \pi_0\), then we can fix \(x_k\) to one.
Improving Coefficients

• Suppose again that \((\pi, \pi_0)\) is a valid inequality for a 0-1 integer program.

• Suppose that \(\pi_k > 0\) and \(\sum_{j: \pi_j > 0, j \neq k} \pi_j < \pi_0\).

• If \(\pi_k > \pi_0 - \sum_{j: \pi_j > 0, j \neq k} \pi_j\), then we can set

 \[\pi_k \leftarrow \pi_k - (\pi_0 - \sum_{j: \pi_j > 0, j \neq k} \pi_j) \], and

 \[\pi_0 \leftarrow \sum_{j: \pi_j > 0, j \neq k} \pi_j. \]

• Similarly, suppose that \(\pi_k < 0\) and \(\pi_k + \sum_{j: \pi_j > 0, j \neq k} \pi_j < \pi_0\).

• Then we can again set \(\pi_k \leftarrow \pi_k - (\pi_0 - \pi_j - \sum_{j: \pi_j > 0, j \neq k} \pi_j)\).
Bound Improvement by Reduced Cost

- Consider an integer program \(\max \{ cx \mid Ax \leq b, 0 \leq x \leq u \} \)
- Suppose the linear programming relaxation has been solved to optimality and row zero of the tableau looks like

\[
z = \bar{a}_{00} + \sum_{j \in NB_1} \bar{a}_{0j} x_j + \sum_{j \in NB_2} \bar{a}_{0j} (x_j - u_j)
\]

where \(NB_1 \) are the nonbasic variables at 0 and \(NB_2 \) are the nonbasic variables at their upper bounds \(u_j \).
- In addition, suppose that a lower bound \(z \) on the optimal solution value for IP is known.
- Then in any optimal solution

\[
x_j \leq \left\lfloor \frac{\bar{a}_{00} - z}{\bar{a}_{0j}} \right\rfloor \quad \text{for } j \in NB_1, \text{ and}
\]

\[
x_j \geq u_j - \left\lceil \frac{\bar{a}_{00} - z}{\bar{a}_{0j}} \right\rceil \quad \text{for } j \in NB_2.
\]
In practice, these rules are applied iteratively until none applies.

Applying one of the rules may cause a new rule to apply.

Bound improvement by reduced cost can be reapplied whenever a new bound is computed.

Furthermore, all rules can be reapplied after branching.

These techniques can make a very big difference.
Preprocessing Based on Problem Structure

- **Example**: Preprocessing Methods in Set Partitioning
 - Duplicate columns
 - Dominated rows
 - Column is a sum of other columns
 - Extended row clique
 - Singleton row
 - Rows differ by two entries
Managing the LP Relaxations

• In practice, the number of inequalities generated can be HUGE.

• We must be careful to keep the size of the LP relaxations small or we will sacrifice efficiency.

• This is done in two ways:
 – Limiting the number of cuts that are added each iteration.
 – Systematically deleting cuts that have become ineffective.

• How do we decide which cuts to add?

• And what do we do with the rest?

• What is an ineffective cut?
 – One whose dual value is (near) zero.
 – One whose slack variable is basic.
 – One whose slack variable is positive.
Managing the LP Relaxations

- Below is a graphical representation of how the LP relaxation is managed in practice.
- Newly generated cuts enter a buffer (called the local cut pool).
- Only a small number of the most violated cuts from the buffer are added each iteration.
- Cuts that prove effective locally are eventually sent to the global pool for future use.
Cut Generation and Management

- A significant question in branch and cut is what classes of valid inequalities to generate and when?
- It is generally not a good idea to try all cut generation procedures on every fractional solution arising.
- For generic mixed-integer programs, cut generation is most important in the root node.
- Using cut generation only in the root node yields a procedure called *cut and branch*.
- Depending on the structure of the instance, different classes of valid inequalities may be effective.
- Sometimes, this can be predicted ahead of time (knapsack inequalities).
- In other cases, we have to use past history as a predictor of effectiveness.
- Generally, each procedure is only applied at a dynamically determined frequency.
Cut Sharing

- Note that cuts generated by the C-G procedure are not globally valid, i.e., at other search tree nodes (why not?).

- Structural cuts generated using problem-specific separation algorithms are globally valid by definition.

- Sometimes these cuts are difficult to generate and some amount of luck may be involved in finding “important” ones.

- The advantage of generating globally valid inequalities is that they can be used later in other search tree nodes.

- This sharing of polyhedral information can help create a much better approximation of the convex hull of solutions.

- This is done through the use of one or more cut pools.
Cut Pools

- **Cut pools** can be used to store cuts that have proven effective for later use.

- The cut pool can be considered as an **auxiliary mechanism** for performing separation.

- The solver can check the cut pool periodically to see if it contains any inequalities that can separate the current LP solution.

- In this way, the cut pool can be thought of as a **global database** of polyhedral information that is queried to obtain **localized descriptions**.

- As already noted, the number of generated cuts can be **HUGE**, so the cut pool must be carefully maintained (more on that later).
Managing the Cut Pool

- Cut pools can easily grow quite large.

- We need to limit their size for two reasons
 - Memory
 - Efficiency

- We limit the size of the cut pool by
 - Eliminating duplicates.
 - Only allowing in cuts that have already proved effective.
 - Purging cuts that are underutilized or irrelevant.

- How do we judge which cuts are irrelevant?
Searching the Cut Pool

- Searching the cut pool means locating cuts in the list that are violated by a given LP solution.
- Computing the violation of each cut with respect to a given solution can take time.
- We still may not want to search through the entire pool.
- Which cuts do we check?
 - Those that have proven the most effective.
 - Those that were generated “nearby” in the search tree.
- Another idea for increasing the efficiency of the cut pool is to have multiple pools servicing different parts of the tree.
Overview of the Bounding Process

- Solve current LP relaxation
 - Bound test
 - Feasibility test
 - Primal heuristics
 - Preprocessing
 - Branch or cut?
 - Generate valid inequalities
 - Cut management
 - Branching test

- Fathom
 - Fathom
 - Fathom

- Branch
 - Compare candidates
 - Select candidates
 - Branch

Branch or cut?