Search Algorithms

IE 496 Lecture 17
Reading for This Lecture

• Primary
 - Horowitz and Sahni, Chapter 8
Basic Search Algorithms
Search Algorithms

- *Search algorithms* are fundamental techniques applied to solve a wide range of optimization problems.

- Generally speaking, search algorithms explore a graph in order to find a set of nodes or edges satisfying a particular property.

- Simple examples
 - Find nodes that are reachable by directed paths from a source node.
 - Find nodes that can reach a specific node along directed paths
 - Identify the connected components of a network
 - Identify directed cycles in network
Basic Graph Search Algorithm

- Node s is a given initial node
- $Q \leftarrow \{s\}$
- While $Q \neq \emptyset$
 - Let v be any member of Q
 - Remove v from Q
 - Mark v
 - For v' in $A(v)$
 - If v' is not marked
 - $Q \leftarrow Q \cup \{v\}$
Search Algorithms

• The search proceeds depending on how element v is selected in each iteration.

• Q is usually ordered in some way by storing it in an appropriate data structure.

 − If Q is a queue, we get FIFO ordering (traversal order?).
 − If Q is a stack, we get LIFO ordering (traversal order?).

• The efficiency of the algorithm can be affected by the ordering and the data structure used to maintain Q
Search Tree

- Associated with each search ordering is a search tree that can be used to visualize the algorithm.
- At the time a node v' is added to Q, we record v as its predecessor.
- The set of arcs formed by each node and its predecessor forms a tree rooted at s.
Complexity of Search Algorithms

• Initialization

• Maintaining the set \(Q \).
 – What is the maximum number of additions and removals?
 – How many operations are required for each?

• Searching the adjacency lists.
 – How many times do we touch each element of each list?
 – How much work do we do each time we touch an element?

• In some cases, the adjacency lists are constructed dynamically and this step may also be expensive.

• The size of the graph may not be polynomial in the size of the input.
The Graph Search Paradigm

- The basic algorithm is a template for a whole class of algorithms.
- How can we use it to determine whether a graph is connected?
- What other algorithms that we've seen can be viewed as graph search algorithms?
Topological Ordering

• In a directed graph, the arcs can be thought of as representing *precedence constraints*.

• In other words, an arc \((i,j)\) represents the constraint that node \(i\) must come before node \(j\).

• Given a graph \(G=(N,A)\) with the nodes labeled with 1 through \(n\), let \(\text{order}(i)\) be the label of node \(i\).

• Then, this labeling is a *topological ordering* of the nodes if for every arc \((i,j)\) in \(A\), \(\text{order}(i) < \text{order}(j)\).

• Can all graphs be topologically ordered?
Topological Ordering Algorithm
Analysis

• **Correctness**
 - If G has a cycle...
 - If G has no cycle.

• **Running time**
Advanced Search Algorithms
The Bin Packing Problem

- We are given a set of n items, each with a size/weight w_i.
- We are also given a set of bins of capacity C.
- **Bin Packing Problem**: Pack the items into the smallest number of bins possible.
- The total size/weight of items assigned to each bin must not exceed the capacity C.
- This problem is NP-hard.
Heuristic Methods

- Heuristic methods derive an approximate solution quickly (usually polynomial time).
- Heuristics for the Bin Packing Problem.

- Performance guarantees.
Integer Knapsack Problem

- We are given \(n \) objects.
- Each object has a weight \(w_i \) and a profit \(p_i \).
- We also have a knapsack with capacity \(M \).
- **Objective:** Fill the knapsack as profitably as possible.
- We do not allow fractional objects.
- This is an \(NP \)-hard problem.
Exact Solution Method

- We cannot hope for a polynomial-time algorithm for this problem.
- How do we solve it?
- What is the complexity?
Heuristic Methods

- Heuristic methods derive an approximate solution quickly (usually polynomial time).
- Heuristic for the Knapsack Problem.

- Performance guarantees.
Branch and Bound Methods

- *Branch and Bound* is a general method that can be used to solve many NP-complete problems.
- Components of Branch and Bound Algorithms
 - Definition of the state space.
 - Branching operation.
 - Feasibility checking operation.
 - Bounding operation.
 - Search order.
Definition of the State Space

• To apply branch and bound, the solution must be expressible as an \(n \)-tuple \((x_1, x_2, ..., x_n)\) where \(x_i\) is chosen from a finite set \(S_i\).

• A set of all possible \(n \)-tuples is the state space \(S\).

• Knapsack Problem

• Bin Packing Problem
Decisions, Feasibility, Optimization

- **Feasibility problems**
 - A defined subset of the state space contains the "feasible" elements.
 - There are various ways to define "feasibility".
 - The goal is to find one feasible element of the state space.

- **Optimization problems**
 - We are also given an *objective function* f which assigns a cost to each element of the state space.
 - We would like to find a feasible state with the lowest cost.

- **Decision problems**
Branching Operation

- **Operation by which the original state space is partitioned into at least two non-empty subproblems.**

- **Typical branching operation**
 - Pick an element i of the n-tuple.
 - Generate $|S_i|$ subproblems by setting x_i to each of its possible values in succession.

- **Knapsack**

- **Bin Packing**
Feasibility Checking Operation

- Given a subproblem, we need to check whether it contains any feasible solutions.
- This may or may not be possible for partially defined states.
- It must be possible if the state is fully defined.
- Knapsack Problem
 - Bin Packing Problem
Bounding Operation

- If applicable, we want upper and lower bounds on the optimal value of the current subproblem.
- This may not be possible.
- *Upper bounds* generally come from finding a feasible solution.
- Upper bounds are global
- *Lower bounds* can come from a number of sources.
- Knapsack

- Bin Packing
Basic Branch and Bound Algorithm

BBound \((S, U)\)

\[S = \{ s: s \text{ is a feasible state} \}, U = \text{current upper bound} \]
if \((\text{FEASIBLE}(S) == \text{FALSE})\) return\((\infty)\);
if \((\text{LBOUND}(S) \geq U)\) return\((\infty)\);
if \((\text{UBOUND}(S) < U)\) \(U = \text{UBOUND}(S)\);
if \((\text{LBOUND}(S) < U)\)
 BRANCH\((S) \rightarrow S_1, \ldots, S_k;\)
 for \((i = 0; i < k; i++)\)
 if \((\text{BB}(U, S_i) < U)\) \(U = \text{BB}(S_i)\);
return\((U)\);
More Generally

- Associate branch and bound with a search tree.
- Maintain a priority queue of candidate subproblems.
- Iterate
 - Pick a subproblem from the queue and process it.
 - Check feasibility.
 - Perform upper and lower bound.
 - Prune if infeasible or lower bound greater than or equal to upper bound.
 - Branch.
 - Add new subproblems to the queue.
Search Strategies

• Depth First

• Breadth First

• Highest Lower Bound

• Lowest Lower Bound
The Traveling Salesman Problem