Reading for This Lecture

- Primary
 - Horowitz and Sahni, Chapter 4
Greedy Algorithms
Combinatorial Optimization

- A combinatorial optimization problem consists of
 - A ground set E
 - An associated set F of subsets of E called the *feasible subsets*.
 - A cost vector c.
- The cost of each subset in F is the sum of the costs of the individual members.
- The goal is to find a subset of minimum cost.
Greedy Algorithms

- *Greedy algorithms* are algorithms in which the solution is constructed by adding one item at a time.
- The items are added according to a myopic selection criteria.
- In some cases, this leads to a globally optimal solution.
- In other cases, the procedure may be used as a heuristic for constructing solutions to a difficult problem.
Basic Algorithm

A is an array of the inputs
S = ∅;
for (i = 0; i < n; i++){
 x = SELECT(A);
 if (FEASIBLE(UNION(S, x))){
 S = UNION(S, x);
 }
}
Basic Data Structures

- SELECT

- UNION
Fractional Knapsack Problem

• We are given \(n \) objects.
• Each object has a weight \(w_i \) and a profit \(p_i \).
• We also have a knapsack with capacity \(M \).
• **Objective:** Fill the knapsack as profitably as possible.
• We allow fractional objects.
• Algorithm

• Analysis
Job Sequencing with Deadlines

• We are given a set of n jobs.
• Each job takes one unit of time.
• Each job has a deadline d_i and a profit p_i.
• **Objective:** A feasible schedule that maximizes profit.
• **Algorithm**
• **Analysis**
Spanning Trees

- We are given a graph $G = (V, E)$.
- A spanning tree of E is a maximal acyclic subgraph (V, T) of G.
- A spanning tree always has $|V| - 1$ edges (why?).
Minimum Spanning Tree

- We associate a weight w_e with each edge e.
- **Objective**: Find a spanning tree of minimum weight.
- **Applications**
Optimality Conditions

- A spanning tree T^* is a minimum spanning tree if and only if for every tree arc (i,j) in T^*, $c_{ij} \leq c_{kl}$ for every arc (k,l) contained in the cut formed by deleting arc (i,j) from T^*.

- A spanning tree T^* is a MST if and only if for every non-tree arc (k,l) of G, $c_{ij} \leq c_{kl}$ for every arc (i,j) contained in the path in T^* connecting nodes k and l.
Kruskal's Algorithm

T is the set of edges in the tree

\[T = \emptyset \]

Sort the edges by weight

\[
\text{for } (i = 0; i < m; i++)\{
 \text{SELECT the next edge } e \text{ in the list}
 \text{if (FEASIBLE(UNION}(T, e))}\{
 \text{UNION}(T, e);
 \}
\]
Analysis of Kruskal's Algorithm

- Correctness
- Optimality
- Implementation
- Complexity
Prim's Algorithm

S is the set of nodes in the graph

S = {0}
for (i = 0; i < n; i++){
 SELECT i \notin S nearest to S;
 S = UNION(S, i);
}
Analysis of Prim's Algorithm

- Correctness
- Optimality
- Implementation
- Complexity
Single-source Shortest Paths

- Given an undirected graph $G = (V, E)$, a length l_e for each edge e, and a source vertex v_0.
- We are looking for the shortest path from v_0 to all other vertices in the graph.
- The algorithm is almost identical to Prim's MST algorithm.
Dijkstra's Algorithm

S is the set of nodes that have been examined

\(S = \{0\} \)

\(d[v] = c(0,v) \quad \forall \ v \in V \setminus S \)

for \((i = 1; \ i < n; \ i++)\) {
 SELECT \(w \notin S \) with minimum \(d[w] \);
 \(S = \text{UNION}(S, \ w) \);
 set \(d[v] = \min(d[v], \ d[w]+c(w,v)) \);
}
Analysis of Dijkstra's Algorithm

- Correctness
- Optimality
- Implementation
- Complexity