Disjoint Sets

IE 496 Lecture 14
Reading for This Lecture

- Horowitz and Sahni, Chapter 2
- Kozen, Lecture 10-11
Data Structures for Disjoint Sets

- We have a set S and a partition S_1, \ldots, S_n of S.

- We want a data structure that supports
 - union()
 - find()

- Applications
 - Constructing equivalence classes
 - Graph algorithms
Union-Find

- Represent each member of the partition as a rooted tree.
- Choose a designated "representative".
- All other elements are connected to the representative.
First implementation

• union()
 – Point root of set A to root of set B
• find()
 – Follow the path to the root.
• Analysis
A Tale of Two Heuristics

- How can we improve the complexity of `find()`?
- **Heuristic 1**

- **Heuristic 2**
Analysis

• Heuristic 1 guarantees that the depth of each tree is no more than \(\lfloor \log n \rfloor + 1\).

• The proof of this is by induction.

• This implies that \texttt{find()} can be performed in \(O(\log n)\)

• Heuristic 2 allows us to perform \texttt{find()} in \textit{almost} constant time (\textit{amortized}).
Ackerman's Function

- Ackerman's function is an extremely fast growing function.

- **Definition**

 - $A_0(x) = x + 1$
 - $A_{k+1}(x) = A_k^x(x)$, where $A_k^{i+1}(x) = A_k(A_k^i(x))$

- $A_0(x) = x+1$, $A_1(x) = 2x$, $A_2(x) = x2^x$, $A_3(x) \geq 2 \uparrow x$

- $A_4(2)$ is greater than the number of particles in the known universe or the number of nanoseconds since the Big Bang (large number).
Inverse Ackerman's Function

- Define $A(k) = A_k(2)$.
- Now define $\alpha(n) =$ smallest k such that $A(k) \geq n$
- $\alpha(n)$ is the inverse Ackerman's function
- $\alpha(n)$ is 4 for all practical purposes.
- Let $T(m, n)$ be the running time of a sequence of $m \geq n$ \texttt{find()} operations and $n-1$ \texttt{union()} operations.
- $T(m, n) \in O(\alpha(n)(m+n))$