IE 495 Lecture 3

September 5, 2000
Reading for this lecture

• **Primary**
 – Miller and Boxer, Chapter 1
 – Aho, Hopcroft, and Ullman, Chapter 1

• **Secondary**
 – Parberry, Chapters 3 and 4
 – Cosnard and Trystram, Chapter 5
 – Chaudhuri, Chapters 2 and 3
Models of Computation
Analysis of Algorithms

- We are interested in the time and space needed to perform an algorithm.
- There are several ways of approaching this analysis.
 - Worst case
 - Average case
 - Best case
- Worst case is the most common type of analysis (why?).
- Generally speaking, time is the most constraining resource.
Random Access Machine Model
A RAM Program

• At each time step, one elementary operation is completed.

• Sample list of elementary operations

 - LOAD
 - STORE
 - ADD
 - SUB
 - MULT
 - DIV
 - READ
 - WRITE
 - JUMP
 - JGTZ
 - JZERO
 - HALT
Assumptions of the RAM model

- The program is not stored in memory and hence cannot be modified.
- The problem is small enough to fit in the memory.
- Any size integer is allowed.
- Fundamental operations can be performed in one unit of time.
- Any memory location can be accessed in one unit of time.
- This is what is known as a "unit cost model".
Assessment of the model

• The details of the model are not especially important.

• Sequential Computation Thesis: All "reasonable" models are "polynomially equivalent".

• The assumptions of the model allow us to do rigorous asymptotic analysis.

• It is possible to abuse the assumptions of the model.

• Log cost model takes into account the size of the numbers.
The Basic PRAM model

Program → Control Unit

P0 | Local Memory Registers |
P1 | Local Memory Registers |
 | |
Pn | Local Memory Registers |

Global Memory
Assumptions of the PRAM model

- This is a synchronous model with shared memory.
- There are a fixed number of processors (bounded).
- All processors execute the same program, but each one can be in a different place.
- At each time step, each processor performs one elementary operation.
- Memory access is performed in constant time.
- Processors are not linked directly.
- Communication issues are not considered.
- What are some problems with this model?
Concurrent Memory Access

• What if two processors try to read/write to/from the same memory location in the same time step?
• We have to resolve these conflicts.
• Four possible models:
 – CREW <-- we will use this one (most of the time)
 – CRCW
 – EREW
 – ERCW
Assessment of the PRAM Model(s)

- This model is not as "robust" as the RAM model.
- However, it allows us to do rigorous analysis.
- It is a reasonable model of a small parallel machine.
- It is not "scalable".
- It does not model distributed memory or interconnection networks.
- How do we fix it?
Distributed PRAM Model

- Attempt to model the interconnection network.
- Eliminate global memory.
- Each processor can read or write only from its neighbors' registers.
- This will likely increase the complexity of many algorithms, but is more realistic and scalable.
Algorithmic Complexity
Algorithmic Complexity

- The time complexity of an algorithm is the number of time steps needed to execute it.
 - Worst case
 - Average case
 - Best case
- The space complexity is the number of registers required to execute the algorithm.
- Complexity is usually expressed as a function $f(n)$, where n is the size of the input.
- Algorithms that execute in polynomial time and space are usually considered "good".
Asymptotic Analysis

- **We are interested in how algorithms behave as the input size increases, i.e. asymptotically.**

- **Order relations help us group functions according to their approximate rate of growth.**

- **Definitions**

 - \(f(n) \in O(g(n)) \iff \exists c, n_0 \text{ s.t. } f(n) \leq cg(n) \forall n \geq n_0 \)

 - \(f(n) \in \Omega(g(n)) \iff \exists c, n_0 \text{ s.t. } f(n) \geq cg(n) \forall n \geq n_0 \)

 - \(f(n) \in \Theta(g(n)) \iff \exists c_1, c_2, n_0 \text{ s.t. } c_1 g(n) \leq f(n) \leq c_2 g(n) \forall n \geq n_0 \)

 - \(f(n) \in o(g(n)) \iff \forall C, \exists n_0 \text{ s.t. } f(n) < Cg(n) \forall n \geq n_0 \)

 - \(f(n) \in \omega(g(n)) \iff \forall C, \exists n_0 \text{ s.t. } f(n) > Cg(n) \forall n \geq n_0 \)

All constants are positive in these definitions
Limitations of Asymptotic Analysis

• Ignores constant factors
 – These are nearly impossible to model
 – Example:

    ```cpp
    for (i = 0; i < 10; i++)
      write i;
    
    for (i = 9; i >= 0; i--)
      write i;
    ```

• Small problem sizes

• Worst case vs. average case
Comparing the models

Simple examples

• Broadcasting a unit of data
 – $O(1)$ under the shared-memory CREW model
 – $O(n)$ under the shared-memory EREW model
 – $O(\sqrt{n})$ under the distributed-memory CREW model on a mesh
 – $O(\log n)$ under the distributed-memory tree model

• Note: These models are architecture dependent

• This is the biggest difference between sequential and parallel complexity analysis
Semigroup operations

• **Definition:** A binary associative operation.

 \[(x \otimes y) \otimes z = x \otimes (y \otimes z) \]

• **Typical semigroup operations.**

 – maximum

 – minimum

 – sum

 – product

 – OR

• **Can be used to compare parallel architectures.**
Semigroup operations example

- **RAM Algorithm**

- **Shared-memory PRAM Algorithm**

 Assumptions: n processors, CREW

 Input: An array $X = [x_1, x_2, \ldots, x_{2n}]$

 Output: The smallest entry of X

  ```
  for (i = 0; i < \log_2(n); i++){
      parallel for (j = 0; j < 2^{\log(n)-i-1}; j++){
          read $x_{2j-1}$ and $x_{2j}$;
          write $\min(x_{2j-1}, x_{2j})$;
      }
  }
  
  $t_1$ is the desired minimum
Example: Insertion Sort