IE 495 Lecture 25

November 30, 2000
Reading for This Lecture

• Primary
 – Bazaraa, Sherali, and Sheti, Chapter 2.
 – Chvatal, Chapters 6 and 7.
Linear Programming
Introduction

- Consider again the system $Ax = b, A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^m$.
- In this problem, there are either
 - no solutions
 - one solution
 - infinitely many solutions (if $n > m$)
- The problem of *linear programming* is

\[
\begin{align*}
\min & \quad c^T x \\
\text{s.t.} & \quad Ax = b \\
& \quad x \geq 0
\end{align*}
\]
The Simplex Algorithm

- Note that $x_B = B^{-1}b - B^{-1}Nx_N$
- Hence, $c^T x = c_B^T x_B + c_N^T x_N = c_B^T B^{-1}b + (c_N^T - c_B^T B^{-1}N) x_N$
- So if $c_N^T - c_B^T B^{-1}N \geq 0$, we have found the optimal solution (why?).
- Otherwise, suppose some component of $c_N^T - c_B^T B^{-1}N$ is negative.
- Then we raise the value of the corresponding variable as much as possible while maintaining feasibility.
Summary of the Simplex Algorithm

- **Simplex algorithm**
 - Compute $yB = c^T_B$
 - Choose a column of a_j of N such $ya_j < c_j$
 - Compute $Bd = a_j$
 - Find the largest t such that $x^*_B - td \geq 0$
 - Set the value of x_j to t and the values of the basic variables to $x^*_B - td$
 - Update the basis.

- The only hard part is implementing the last step.
Implementing the Algorithm

- Let B_k be the basis after the k^{th} iteration.

- Note that $B_k = B_{k-1}E_k$ where
 - E_k is the identity matrix with the p^{th} column replaced by $d = B_{k-1}^{-1}a_j$ (already computed).
 - p is the "leaving column"

- So, we have $B_k = B_0E_1 ... E_k = LUE_1 ... E_k$

- To update at each iteration, we merely append the next eta matrix to the list.

- Often, B_0 is the identity matrix.
Refactorizing the Basis

- After many iterations, it can become inefficient to solve these systems.
- Periodically, throw away all the eta files and calculate a brand new LU factorization.
- How often should this be done?
- It depends on the matrix.
- Under some fairly reasonable assumptions, the "break-even" point seems to be ≈ 15 iterations.
Another Approach

- Update the LU factorization directly
- We have $B_k = L_k U_k$.
- We also have $B_{k+1} = B_k E_{k+1}$.
- Hence, $B_{k+1} = L_k U_k E_{k+1}$.
- We can permute the rows and columns of $V = U_k E_{k+1}$ such that V differs from an upper-triangular matrix in at most one row.
- It is then easy to perform an LU factorization of V.
- This can easily be made into an LU factorization of B_{k+1}.

Issues to be addressed

• Ensuring numerical accuracy
 – Conditioning
 – Stability
 – Zero tolerances

• Ensuring efficiency
 – Maintaining sparsity
 – Updating basis factorization
Dealing with Large Matrices

• Recall this step from the Simplex Algorithm:
 – Choose a column of a_j of N such $ya_j < c_j$

• This step is called *pricing*.

• One approach is to choose the quantity $c_j - ya_j$ to be as large as possible.

• If the number of columns of A is large, then the pricing step can be cumbersome.

• Partial pricing is the practice of only pricing out a small subset of possible columns.
Column Generation

- Notice that the problem $\max \{c_j - y a_j\}$ is an optimization problem.
- Notice also that it is not necessary to have all the columns present in the matrix.
- Suppose the columns of the matrix have a special structure that allows us to generate them "automatically".
- We can solve the above optimization problem to determine the next column to be pivoted in.
- All we really need is the columns of the optimal basis.
Constraint Generation

- Consider an LP specified as follows

\[
\begin{align*}
\text{min} & \quad c^T x \\
\text{s.t.} & \quad Ax \leq b
\end{align*}
\]

- In this case, we can sometimes have \(m >> n \).
- Constraints (rows) can also be automatically generated.
- This is called separation.
Deleting Columns and Rows

• If the slack variable for a particular row is basic, then that row is "inactive".

• Inactive rows can be deleted from the problem without changing the optimal solution.

• Similarly, there are methods of proving that a particular column can never be basic in an optimal solution.

• While solving large LP's by column and constraint generation, we can simultaneously purge ineffective rows and columns and generate new ones.

• This technique can be very effective.
Integer Linear Programs
Integer Linear Programs

• Now one more layer of complication. . . .
• Suppose that we have an LP in which some of the variables are constrained to be integer-valued.

\[
\begin{align*}
\text{min} & \quad c^T x \\
\text{s.t.} & \quad Ax = b \\
& \quad x \geq 0 \\
& \quad x \in \mathbb{Z}^n
\end{align*}
\]

• The Simplex Algorithm can't handle this.

LP-based Branch and Bound

- **Basic Method**
 - Formulate and solve the *LP relaxation*.
 - If the optimal solution is integral, STOP.
 - Otherwise, branch on some fractional variable
 - Iterate

- **Notice that solving the LP serves a three-fold purpose**
 - Generates a lower bound
 - Possibly generates a feasible solution
 - Indicates how to branch
Example: Traveling Salesman Problem