Reading for This Lecture

- **Primary**
 - Miller and Boxer, Pages 124-128
 - Forsythe and Mohler, Sections 1 to 8
Matrix Multiplication

- The standard sequential algorithm for multiplying matrices is $O(n^3)$.
- Strassen's Algorithm is a divide and conquer approach.
- Analysis of Strassen's Algorithm
 - $T(n) = 7T(n/2) + dn^2$
 - $T(n) = O(n^{\log(7)}) = O(n^{2.81...})$
- Every algorithm must be $\Omega(n^2)$.
- The best known algorithm to date is $O(n^{2.376...})$.
- Can we parallelize Strassen's Algorithm?
Parallel Matrix Multiplication

- Assume a CREW shared-memory architecture with n^3 processors.
- Label processors as P_{111} through P_{nnn}.
- Processor P_{ijk} calculates $a_{ik} \cdot b_{kj}$.
- The remaining sums can be computed in $O(\log n)$ using a semigroup operation.
- The running time is $O(\log n)$.
- Cost optimality?
Matrix Multiplication on a Mesh

- Assume a $2n \times 2n$ mesh computer.
- Assume each processor initially stores one entry.
- Algorithm

- Analysis

- Optimality
Real Vector Spaces

- A real vector space is a set \mathcal{V}, along with
 - an addition operation that is commutative and associative.
 - an element $0 \in V$ such that $a + 0 = a$, $\forall a \in \mathcal{V}$.
 - an additive inverse operation such that $\forall a \in V$, $\exists a' \in \mathcal{V}$ such that $a + a' = 0$.
 - a scalar multiplication operation such that $\forall \lambda, \mu \in \mathbb{R}, a, b \in \mathcal{V}$
 - $\lambda(a + b) = \lambda a + \lambda b$
 - $(\lambda + \mu)a = \lambda a + \mu a$
 - $\lambda(\mu a) = (\lambda \mu)a$
 - $1a = a$
Norms on Vector Spaces

- A norm on a vector space is a function $\| \cdot \| : \mathcal{V} \to \mathbb{R}$ satisfying
 - $\|v\| \geq 0 \ \forall v \in \mathcal{V}$
 - $\|v\| = 0$ if and only if $v = 0$
 - $\|v + w\| \leq \|v\| + \|w\| \ \forall v, w \in \mathcal{V}$
 - $\|\lambda v\| = |\lambda| \cdot \|v\|$

- Norms are used for measuring the "size" of an object or the "distance" between two objects in a vector space.

- These are the normal properties you would expect such a measure to have.
Examples of Vector Spaces

- \mathbb{R}^n
- \mathbb{Z}^n
- $\mathbb{R}^{n \times n}$
- $\{y \in \mathbb{R}^m : Ax = y, \exists x \in \mathbb{R}^n\}$
Matrix and Vector Norms

- Unless otherwise indicated, we will use the L_2 norm for vectors and the corresponding norm for matrices.
- We will denote this by $\| \cdot \|$.
- Note the following definitions and properties
 - $|x^T y| \leq \|x\| \cdot \|y\|$
 - $\|A\| = \max \{\|Ax\|/\|x\|, \ x \neq 0\}$
 - $\|Ax\| \leq \|A\| \cdot \|x\|$
 - $\|AB\| \leq \|A\| \cdot \|B\|$
Solving Systems of Equations

- **Problem**: Given a matrix $A \in \mathbb{R}^{n \times n}$ and a vector $b \in \mathbb{R}^n$, we wish to find $x \in \mathbb{R}^n$ such that $Ax = b$.

- **Diagonal form of a matrix**
 - An orthogonal matrix U has the property the $U^T U = UU^T = I$.
 - Given $A \in \mathbb{R}^{n \times n}$, there exist orthogonal matrices U, V such that
 - $U^T A V = D$ where D is a diagonal matrix where
 - diagonal elements of D are $\mu_1 \geq \mu_2 \geq \cdots \geq \mu_r > \mu_{r+1} = \cdots = \mu_n = 0$, and
 - r is the rank of A.
 - μ_i is the non-negative square root of the i^{th} eigenvalue.
 - This is called the *singular value decomposition*.
Importance of the SVD

Effect of multiplying by a matrix
Implications

- Multiplying by A represents a *rotation* and a *scaling* of axes to get from one space to the other.
- μ_i is the non-negative square root of the i^{th} eigenvalue.
- Notice that $\|A\| = \|D\| = \mu_i$.
- So the norm of A is the maximum amount any axis gets magnified by A.
- If $r = n$, then we can easily derive the inverse of A.
- Also, $\|A^{-1}\| = \|A\|^{-1} = 1/\mu_n$.