IE 495 Lecture 12

October 5, 2000
Reading for This Lecture

- Primary
 - Horowitz and Sahni, Chapter 2, Section 3
 - Kozen, Lectures 8-11
Review From Last Time
Binomial Trees

- The *binomial tree* of rank i (B_i) is defined recursively.
- B_i consists of a *root* with i children B_0, \ldots, B_{i-1}.
Binomial Heaps

• A binomial heap is a collection of heap ordered binomial trees and a pointer to the overall max/min.
• No more than one tree of each rank is allowed.
• The children of each vertex are maintained in a circular linked list.
• The basic operation is linking.
• Two trees of rank i can be combined into one tree of rank $i+1$ in constant time.
Eager Meld

- We can combine two heaps by performing a `meld()` reminiscent of binary addition.
- Successively link trees of equal rank and "carry" one if necessary.
- Must track the position of the new min/max element.
- This operation takes $O(\log n)$ time.
Inserting into a Binomial Heap

- To \textit{insert()} an element:
 - Make a new heap from the single element to be inserted.
 - Meld the new heap with the old one.
- To \textit{make_heap()} from scratch, perform a sequence of inserts.
- To \textit{delete()} the min/max element:
 - The children of this element form a new binomial heap.
 - Meld the old heap and the new one.
Amortized Analysis

- \texttt{meld()} and \texttt{delete()} both take $O(\log n)$.
- We will use amortized analysis to show that \texttt{insert()} is constant time overall.
- \textbf{Idea}: The total number of linking operations can never be more than the number of insert operations.
- This means that any sequence of inserts takes constant time \textit{on average}.
Data Structures for Disjoint Sets

- We have a set S and a partition S_1, \ldots, S_n of S.
- We want a data structure that supports
 - `union()`
 - `find()`
- Applications
 - Constructing equivalence classes
 - Graph algorithms
Union-Find

- Represent each member of the partition as a rooted tree.
- Choose a designated "representative".
- All other elements are connected to the representative.
First implementation

- union()
 - Point root of set A to root of set B

- find()
 - Follow the path to the root.

- Analysis
A Tale of Two Heuristics

- How can we improve the complexity of `find()`?
- **Heuristic 1**

- **Heuristic 2**
Analysis

- Heuristic 1 guarantees that the depth of each tree is no more than $\lceil \log n \rceil + 1$.
- The proof of this is by induction.
- This implies that find() can be performed in $O(\log n)$.
- Heuristic 2 allows us to perform find() in almost constant time (amortized).
Ackerman's Function

- Ackerman's function is an extremely fast growing function.
- **Definition**
 - $A_0(x) = x + 1$
 - $A_{k+1}(x) = A_k^x(x)$, where $A_{k+1}(x) = A_k(A_k^1(x))$
- $A_0(x) = x + 1$, $A_1(x) = 2^x$, $A_2(x) = x2^x$, $A_3(x) \geq 2 \uparrow x$
- $A_4(2)$ is greater than the number of particles in the known universe or the number of nanoseconds since the Big Bang (large number).
Inverse Ackerman's Function

- Define $A(k) = A_k(2)$.
- Now define $\alpha(n) =$ smallest k such that $A(k) \geq n$
- $\alpha(n)$ is the inverse Ackerman's function
- $\alpha(n)$ is 4 for all practical purposes.
- Let $T(m, n)$ be the running time of a sequence of $m \geq n$ `find()` operations and $n-1$ `union()` operations.
- $T(m, n) \in O(\alpha(n)(m+n))$
Hash Tables

- **Symbol Table**
 - Determine presence of an arbitrary element
 - Allow easy insertion and deletion

- **Hashing is an easy and efficient implementation**

- **Hash function**
 - Maps each possible element into a specified bucket
 - The number of buckets is much less than the number of possible elements
 - Each bucket can store a limited number of elements
Parameters

- $T =$ total number of possible elements
- $b =$ number of buckets
- $s =$ number of elements allowed in each bucket
- $n =$ number of elements in the table
- $n/T =$ element density
- $\alpha = n/sb =$ loading density
Hash Functions

- **Collision**: two elements map to the same bucket
- **Overflow**: too many elements in one bucket
- Choosing a hash function
 - easy to compute
 - minimize collisions
- If $P(f(X) = i) = 1/b$ over all elements X, then f is a uniform hash function
Sample Hash Function

- Interpret the element of the set as an integer X
- Take the hash function to

$$f(X) = X \mod M$$

- M is the number of buckets
- The choice of M is critical
- M should not be a power of 2 or an even number
- M should be a prime number with some other nice properties
Overflow Handling

- Use the next available slot
 - Bad performance when the hash table fills up.
 - Can end up searching the whole table.
 - Average number of comparisons \((2-\alpha)/(2-2\alpha) \).

- Use linked lists
 - Only compare items with same hash value.
 - Average number of comparison \(1 + \alpha/2 \).

- Average case for hash tables is good, but worst case is very bad.