IE 495 Lecture 11

October 3, 2000
Reading for This Lecture

• Primary
 – Horowitz and Sahni, Chapter 2, Section 3
 – Kozen, Lectures 8-11
Binomial Trees

- The *binomial tree* of rank i (B_i) is defined recursively.
- B_i consists of a root with i children B_0, \ldots, B_{i-1}.
Binomial Heaps

- A *binomial heap* is a collection of *heap ordered* binomial trees and a pointer to the overall max/min.
- No more than one tree of each rank is allowed.
- The children of each vertex are maintained in a *circular linked list*.
- The basic operation is *linking*.
- Two trees of rank i can be combined into one tree of rank $i+1$ in constant time.
Eager Meld

- We can combine two heaps by performing a `meld()` reminiscent of binary addition.
- Successively **link** trees of equal rank and "**carry**" one if necessary.
- Must track the position of the new min/max element.
- This operation takes $O(\log n)$ time.
Inserting into a Binomial Heap

- **To `insert()`** an element:
 - Make a new heap from the single element to be inserted.
 - Meld the new heap with the old one.

- **To `make_heap()`** from scratch, perform a sequence of inserts.

- **To `delete()`** the min/max element:
 - The children of this element form a new binomial heap.
 - Meld the old heap and the new one.
Amortized Analysis

- `meld()` and `delete()` both take $O(\log n)$.
- We will use *amortized analysis* to show that `insert()` is constant time overall.
- **Idea**: The total number of linking operations can never be more than the number of insert operations.
- This means that any sequence of inserts takes constant time *on average.*