IE 495 Lecture 10

September 28, 2000
Reading for This Lecture

- Primary
 - Horowitz and Sahni, Chapter 2, Section 3
More Data Structures
Trees

• A (directed) tree is a directed acyclic graph satisfying the following:
 – There is exactly one vertex called the root with in-degree 0.
 – Every other vertex has in-degree 1.
 – There is a path from the root node to every other node.

• Trees also have a natural recursive definition.

• Tree terminology
 – If \((u, v) \in E\), then \(u\) is called the father / mother / parent of \(v\) and \(v\) is called the son / daughter of \(u\).
 – If there is a path from \(u\) to \(v\), then \(v\) is a descendant of \(u\) and \(u\) is an ancestor of \(v\).
More Tree Terminology

- A tree in which each node has out-degree 0, 1, or 2 is called a *binary tree*.
- A tree in which the sons are ordered is called an *ordered tree*.
- In an ordered binary tree, the two sons are usually called the *left son* and the *right son*.
- The *depth* or *level* of a vertex v is the length of the (unique) path from the root to v.
- The depth of a tree is the maximum depth of any node.
Trees and data structures

- Trees are an element of many different data structures.
- Trees are naturally associated with recursive and divide and conquer type algorithms.
- We have already seen how trees can help us partition the elements of a set.
- Sample tree operations
 - `link()`
 - `delete_node()`
 - `add_node()`
Storing a binary tree

• **Arrays**
 - Parent of node i is stored in location $\lfloor i/2 \rfloor$.
 - Easy to go to a specific node.
 - Can use up lots of memory if unbalanced (2^i elements).
 - Not efficient for some tree operations.

• **Pointers**
 - Can be more memory efficient if unbalanced.
 - Easier tree operations in some cases.
Traversing a Tree

• Many common algorithms involve traversing or searching a tree.

• Traversal schemes
 – preorder
 – postorder
 – depth-first
 – breadth-first
Binary Search Tree

• A binary search tree is a binary tree satisfying
 – The value stored at X is greater than the values in the left child and all its descendants.
 – The value stored in X is less than the values in the right child and all its descendants.

• A binary tree can be used to easily perform binary search.
Heaps

- A *heap* is a binary tree in which the value at each node is at least as large as the values in each of its children.
- Hence, a largest element is always at the root.
- Heaps support the following operations
 - `insert()`
 - `delete_max()`
 - `make_heap()`
 - `adjust_heap()`
- Heaps implement a priority queue.
Inserting into a heap

- Insert the value into node $n+1$ and "bubble up".
- Compare the value to its parent and swap if necessary.
- Continue swapping until heap property is restored.
- One way to make a heap from n elements is to simply insert them one at a time.

- Analysis
 - `insert()`
 - `make_heap()`
Adjusting a heap

• If only the root of a heap is out of order, we can restore order by "bubbling down" (adjust()).
 – Swap the root with the larger child.
 – Continue swapping process until heap property is restored.

• Heapify (create a heap by iterative adjusting)

 For each node $i = \lfloor n/2 \rfloor \rightarrow 1$
 adjust node i w.r.t. the subtrees rooted at its children

• Analysis
Deleting from a heap

- To delete the root node,
 - exchange node 1 with node \(n \).
 - adjust the heap.

- Heapsort
 - First heapify.
 - Iteratively delete the root node.

- Analysis