Reading for This Lecture

- C&T Chapter 16
Random LP’s

- Consider the following linear program $LP(\omega)$ that is parameterized by the random vector ω:

 minimize
 $$c^\top x$$

 subject to
 $$Ax = b$$
 $$T(\omega)x = h(\omega)$$
 $$x \in X$$

- For now, we will assume $X = \{x \in \mathbb{R}^n : l \leq x \leq u\}$

- How do we make sense of this?
Example From Lecture #2 Revisited

minimize

\[x_1 + x_2 \]

subject to

\[\omega_1 x_1 + x_2 \geq 7 \]
\[\omega_2 x_1 + x_2 \geq 4 \]
\[x_1 \geq 0 \]
\[x_2 \geq 0 \]
Random Mathematical Programs

• Again, we are dealing with decision problems where the decision x must be made before the realization of ω is known.

• We do, however, know the distribution of ω on Ω.

• In recourse models, the random constraints are essentially modeled as “soft” constraints. Possible violation is accepted, but the cost of violations will influence the choice of x.

• A second stage linear program is introduced that will describe how the violated random constraints are dealt with.
The Recourse LP

- In the simplest case, we may just penalize deviation in the constraints by penalty coefficient vectors q_+ and q_-.
- Then we have the following simple recourse LP that accounts for the deviations.
- The vector x is now fixed to \hat{x} (our first stage decision), so it does not appear in the objective.
- The constraints involving only x are removed.

\[
\begin{align*}
\text{minimize} & \quad q^T_+ s(\omega) + q^T_- t(\omega) \\
\text{subject to} & \quad T(\omega)\hat{x} + s(\omega) - t(\omega) = h(\omega) \\
& \quad s(\omega), t(\omega) \geq 0
\end{align*}
\]
The Stochastic Programming Version

- The stochastic programming version of the overall problem is...

minimize

\[c^\top x + \mathbb{E}_\omega \left[q_+^\top s(\omega) + q_-^\top t(\omega) \right] \]

subject to

\[Ax = b \]
\[T(\omega)x + s(\omega) - t(\omega) = h(\omega) \quad \forall \omega \in \Omega \]
\[s(\omega), t(\omega) \geq 0 \quad \forall \omega \in \Omega \]
\[x \in X \]
Recourse

• In general, we can react in an intelligent (or optimal) way.

• We have some recourse!

• A recourse structure is provided by three items

 – q: a vector of recourse costs.
 – W: a $m \times p$ matrix, called the recourse matrix that describes explicit constraints
 – A set $Y \subseteq \mathbb{R}^p$ that describes implicit, deterministic constraints on the feasible set of recourse actions (e.g., nonnegativity).
Two-stage Stochastic Programs with Recourse

minimize

\[c^\top x + \mathbb{E}_\omega [q^\top y(\omega)] \]

subject to

\[Ax = b \]
\[T(\omega)x + Wy(\omega) = h(\omega) \quad \forall \omega \in \Omega \]
\[x \in X \]
\[y(\omega) \in Y \]

\[Q(x, \omega) = \min_{y \in Y} \{ q^\top y : Wy = h(\omega) - T(\omega)x \} \]
The Discrete Case

• For now, we consider the discrete case, where $\Omega = \{\omega_1, \omega_2, \ldots, \omega_S\} \subseteq \mathbb{R}^r$.

• $P(\omega = \omega_s) = p_s, \forall s = 1, 2, \ldots, S$.

• $T_s \equiv T(\omega_s), h_s = h(\omega_s)$.

• Right now, and in nearly all problems we will see, we have only one W.

• In other words, our recourse does not change with the scenario.

• This is called fixed recourse.
Deterministic Equivalent

- We can then write the *deterministic equivalent* as:

\[
\begin{align*}
\text{minimize} & \quad c^\top x + p_1 q^\top y_1 + p_2 q^\top y_2 + \cdots + p_s q^\top y_s \\
\text{subject to} & \quad Ax = b \\
& \quad T_1 x + W y_1 = h_1 \\
& \quad T_2 x + W y_2 = h_2 \\
& \quad \vdots \\
& \quad T_s x + W y_s = h_s \\
& \quad x \in X, \quad y_1 \in Y, \quad y_2 \in Y, \quad \ldots, \quad y_s \in Y
\end{align*}
\]
About the DE

- \(y_s \equiv y(\omega_s) \) is the recourse action to take if scenario \(\omega_s \) occurs.

- **Pro:** It’s a linear program.

- **Con:** It’s a BIG linear program.
 - \(n + p|S| \) variables
 - \(m_1 + m|S| \) constraints.

- **Pro:** The matrix of the linear program has a very special (staircase) structure.
 - Has anyone heard of Bender’s Decomposition?
 - We will discuss this in the Lecture 21.
What is BIG

We have r random variables (That is why $\Omega \subseteq \mathbb{R}^r$)

- Imagine the following (real) problem. A Telecom company wants to expand its network in a way in which to meet an unknown (random) demand.

- There are 86 unknown demands. Each demand is independent and may take on one of seven values.

- $S = |\Omega| = \Pi_{k=1}^{86}(5) = 5^{86} = 4.77 \times 10^{72} =$ # of subatomic particles in the universe.

- How do we solve a problem that has more variables and more constraints than the number of subatomic particles in the universe?
But Its Even Worse!

- If Ω doesn’t have finite support, our “deterministic equivalent” would have an infinite number of variables and constraints.
- How do we solve that?
- Generally, we can’t!
- We solve an approximating problem obtained through sampling.
- More on this later.
An Example

Let’s solve a deterministic equivalent version of our example problem...

minimize

\[x_1 + x_2 \]

subject to

\[\omega_1 x_1 + x_2 \geq 7 \]
\[\omega_2 x_1 + x_2 \geq 4 \]
\[x_1 \geq 0 \]
\[x_2 \geq 0 \]

• \(\omega_1 \sim U[1, 4] \)
• \(\omega_2 \sim U[1/3, 1] \)
A Recourse Formulation

• As usual, we approximate with a finite set of scenarios S.

minimize

$$x_1 + x_2 + \sum_{s \in S} p_s \lambda(y_{1s} + y_{2s})$$

subject to

$$\omega_{1s} x_1 + x_2 + y_{1s} \geq 7 \quad \forall s \in S$$
$$\omega_{2s} x_1 + x_2 + y_{2s} \geq 4 \quad \forall s \in S$$
$$x_1 \geq 0$$
$$x_2 \geq 0$$
$$y_{1s} \geq 0$$
$$y_{2s} \geq 0$$
AMPL Model

param n := 50;
set S := 1 .. n;
param p{s in S} default 1/card(S);
param w1{S} := Uniform(1,4);
param w2{S} := Uniform(1/3,1);

param PENALTY := 5;

var x1 >= 0;
var x2 >= 0;

var y1{S} >= 0;
var y2{S} >= 0;
AMPL Model (cont.)

minimize ObjPlusRecourse:
 x1 + x2 + sum{s in S} p[s] * PENALTY * (y1[s] + y2[s]);

subject to c1{s in S}:
 w1[s] * x1 + x2 + y1[s] >= 7;

subject to c2{s in S}:
 w2[s] * x1 + x2 + y2[s] >= 4;
Example: Multiperiod Production Planning

- A factory makes several different products
- A known quantity of resources (e.g., machines and labor) are needed to produce each product.
- A random demand must be met at the end of each period.
- Costs are induced when inventory is too large or too small.
- To satisfy demand, additional labor and machine hours can be used, but these additions are bounded.
- There is a “hire and fire” cost associated with changing the workforce level.
Decision Problem

- Right now, we will decide
 - The number of each product to be produced in each period
 - The extra capacity to be used in each period
 - Thehirings and firings to be done in each period

- Then the random demand is realized
 - Conceptually, this occurs for all periods at once.
 - One can think of this as the realization of a new forecast for all future periods.

- After we observe demand, we can decide how to best store product in inventory or purchase from an outside source.

- In this framework, how many stages are in the stochastic programming instance?
Lots of Definitions

Sets

- \(T \): Number of periods. (Also set \(T' \)).
- \(N \): Set of products
- \(M \): Set of resources

Variables

- \(x_{jt} \): Amount of product \(j \in N \) produced in period \(t \in T \)
- \(u_{it} \): Additional amount of resource \(i \in M \) to procure in period \(t \in T \)
- \(z_t^+, z_t^- \): Planned increase/decrease of work force from period \(t - 1 \) to \(t \).
- \(y_{jt}^-, y_{jt}^+ \): Surplus/Shortage of product \(j \in N \) at the end of period \(t \in T \).
Parameters

- All of the above variables have associated costs \((\alpha, \beta, \gamma, \delta)\).
- \(\omega_{jt}\): (Random) demand for product \(j \in N\) in period \(t \in T\).
- \(U_{it}\): Upper bound on \(u_{it}\).
- \(a_{ij}\): Amount of resource \(i \in M\) needed to produce one unit of product \(j \in N\).
- \(b_{it}\): Amount of resource \(i \in M\) available at time \(t \in T\).
The Stochastic Programming Model

minimize

\[\sum_{j \in N} \sum_{t \in T} \alpha_j x_{jt} + \sum_{i \in M} \sum_{t \in T} \beta_i u_{it} + \sum_{t \in T \setminus 1} (\gamma_{t-1}^+ z_{t-1}^+ + \gamma_{t-1}^- z_{t-1}^-) + \sum_{s \in S} \sum_{j \in N} \sum_{t \in T} p_s (\delta_{jt}^+ y_{jts}^+ + \delta_{jt}^- y_{jts}^-) \]

subject to

\[\sum_{j \in N} a_{ij} x_{jt} \leq b_{it} + u_{it} \quad \forall i \in M, \forall t \in T \]

\[u_{it} \leq U_{it} \quad \forall i \in M, \forall t \in T \]

\[z_t^+ - z_t^- = \sum_{j \in N} a_{Lj} (x_{jt} - x_{j,t-1}) \quad \forall t \in T \setminus 1 \]

\[x_{jt} + y_{j,t-1,s}^+ + y_{jts}^- - y_{jts}^- = \omega_{jts} \quad \forall j \in N, \forall t \in T, \forall s \in S. \]
Formalizing: Some Notation

\[
\min_{x \in X : Ax = b} \left\{ c^\top x + \mathbb{E}_\omega \left[\min_{y \in Y} \{ q^\top y : Wy = h(\omega) - T(\omega)x \} \right] \right\}
\]

Second stage value function, or recourse (penalty) function \(v : \mathbb{R}^m \mapsto \mathbb{R} \):

- \(v(z) \equiv \min_{y \in Y} \{ q^\top y : Wy = z \} \)
- Given “policy” \(x \) and realization of randomness \(\omega \).
- If \(z \) measures the first-stage deviation \(z = h(\omega) - T(\omega)x \), \(v(z) \) is the minimum cost way to “correct” so that the constraints hold again.

Expected minimum recourse function \(Q : \mathbb{R}^n \mapsto \mathbb{R} \):

- \(Q(x, \omega) = v(h(\omega) - T(\omega)x) \)
- \(Q(x) = \mathbb{E}_\omega [Q(x, \omega)] \)
- For any policy \(x \in \mathbb{R}^n \), it describes the expected cost of the recourse.
A Compact Formulation

• Using these definitions, we can write our recourse problem in terms only of the x variables:

$$\min_{x \in X} \left\{ c^\top x + Q(x) : Ax = b \right\}$$

• This is a (nonlinear) programming problem in \mathbb{R}^n.

• The ease of solving such a problem depends on the properties of $Q(x)$.

• What does $Q(x)$ look like?
 – Linear (?)
 – Convex (?)
 – Continuous (?)
 – Differentiable (?)
The Value Function

- For the time being, let $Y = \mathbb{R}_+^p$.

$$v(z) = \min_{y \in \mathbb{R}_+^p} \{ q^\top y : Wy = z \}, \ z \in \mathbb{R}^m$$

- Thus, for a fixed z, we solve a linear program to evaluate $v(z)$.
- Assume for the moment that $-\infty < v(z) < \infty \ \forall z \in \mathbb{R}^m$
- Later, we will need some notation.
 - $\{ y \in \mathbb{R}_+^p : Wy = z \} = \emptyset \Rightarrow v(z) = \infty$
 - $\exists d \in \mathbb{R}_+^n$ such that $Wd = 0, q^\top d < 0 \Rightarrow v(z) = -\infty$.
Structure of v

- Under our assumptions...

$$v(z) = \min_{y \in \mathbb{R}^p_+} \{ q^\top y : Wy = z \} = \max_{t \in \mathbb{R}^m} \{ z^\top t : W^\top t \leq q \}$$

- Let $\Lambda = \{ \lambda_1, \lambda_2, \ldots, \lambda_{|\Lambda|} \}$ be the set of extreme points of $\{ t \in \mathbb{R}^m \mid W^\top t \leq q \}$.
 - Each of those extreme points λ_k is a potential optimal solution to the (dual) LP.
 - In fact, we know that if there is an optimal solution, there is one that occurs at an extreme point, so we can write...

$$v(z) = \max_{k=1,\ldots,|\Lambda|} \{ z^\top \lambda_k \}, z \in \mathbb{R}^m.$$
Proving Convexity

\[v(\alpha z_1 + (1 - \alpha)z_2) = \max_{k=1,\ldots,|\Lambda|} \{ (\alpha z_1 + (1 - \alpha)z_2)^\top \lambda_k \} \]

\[= (\alpha z_1 + (1 - \alpha)z_2)^\top \lambda_k^* \]

\[= (\alpha z_1^\top \lambda_k^* + (1 - \alpha)z_2^\top \lambda_k^* \]

\[\leq \alpha \max_{k=1,\ldots,|\Lambda|} z_1^\top \lambda_k + (1 - \alpha) \max_{k=1,\ldots,|\Lambda|} z_2^\top \lambda_k \]

\[= \alpha v(z_1) + (1 - \alpha) v(z_2) \]
Convex!

- So $v(z)$ is convex of $z \in \mathbb{R}^m$.

- In fact...

Theorem 1. If $f_1(x), f_2(x), \ldots f_q(x)$ is an arbitrary collection of convex functions, then $M(x) = \max\{f_1(x), f_2(x), \ldots f_q(x)\}$ is also a convex function.
Structure of $Q(x, \omega)$

- What about $Q(x, \omega)$?
- Recall $Q(x, \omega) \equiv v(h(\omega) - T(\omega)x)$

\[
\lambda Q(x_1, \omega) + (1 - \lambda)Q(x_2, \omega)
\]

\[
= \lambda v(h(\omega) - T(\omega)x_1) + (1 - \lambda)v(h(\omega) - T(\omega)x_2)
\geq v(\lambda(h(\omega) - T(\omega)x_1) + (1 - \lambda)(h(\omega) - T(\omega)x_2))
= v(h(\omega) - T(\omega)(\lambda x_1 + (1 - \lambda)x_2))
= Q(\lambda x_1 + (1 - \lambda)x_2, \omega)
\]
Continuing On

• So $Q(x, \omega)$ is convex in x for a fixed ω.

• In fact...

Theorem 2. If A is a linear transformation from $\mathbb{R}^n \mapsto \mathbb{R}^n$, and $f(x)$ is a convex function on \mathbb{R}^m, the composite function $(fA)(x) \equiv f(Ax)$ is a convex function on \mathbb{R}^n.
Almost Done...

• What about $Q(x) \equiv \mathbb{E}_\omega Q(x, \omega)$?

• Let’s now assume that ω comes from a probability space with finite support.

• This means that there are finite number of discrete values \{\omega_1, \omega_2, \ldots, \omega_m\} that ω can take.

\[Q(x) = \sum_{i=1}^{m} P(\omega = \omega_i)Q(x, \omega_i) \]
Finishing up

Theorem 3. If $f(x)$ is convex, and $\alpha \geq 0$, $g(x) \equiv \alpha f(x)$ is convex.

Theorem 4. If $f_k(x), k = 1, 2, \ldots K$ are convex functions, so is $g(x) \equiv \sum_{k=1}^{K} f_k(x)$.

Put it all together and you get... $Q(x)$ is a convex function of x!
A Simple Example

- Consider a two-stage version of the financial planning example from Lecture 19.

- In our current framework, we can say that the recourse LP for a fixed first-stage solution \(\hat{x} \) (investment plan) is

 minimize

 \[qz + pw \]

 subject to

 \[w - z = G - \sum_{i \in N} \mu_i x_i \]

- For this simple recourse LP, we can write the function \(Q(x, \omega) \) in closed form.

 \[Q(x, \omega) = \begin{cases}
 q(G - \sum_{i \in N} \mu_i(\omega)x_i) & \text{if } \sum_{i \in N} \mu_i(\omega)x_i \geq G, \\
 p(G - \sum_{i \in N} \mu_i(\omega)x_i) & \text{otherwise.}
 \end{cases} \]

- In other words, it is a piecewise linear, convex function with two pieces.
Examining Assumptions

• What assumptions have we made?

• We assumed that $-\infty < v(z) < \infty \ \forall z = (h(\omega) - T(\omega)x)$, where x is any feasible first-stage solution and $\omega \in \Omega$.

 – This is a reasonable assumption in most applications and it is up to the modeler to ensure that it holds.

• We also assumed that Ω has finite support.

 – Although this is not technically the case for most applications, we usually have no choice but to work with discrete approximations.
 – In most cases, this is sufficient.