Reading for This Lecture

- N&W Sections I.4.1-I.4.3
Some Conventions

If not otherwise stated, the following conventions will be followed for lecture slides during the course:

- A will denote a matrix of dimension m by n (rational).
- b will denote a vector of dimension m (rational).
- x will denote a vector of dimension n.
- c will denote a vector of dimension n (rational).
- p will be the number of integer variables.
- \mathcal{P} will denote a polyhedron contained in \mathbb{R}^n, usually given in the form
 \[\mathcal{P} = \{ x \in \mathbb{R}^n \mid Ax \leq b \} \]
- \mathcal{S} will be $\mathcal{P} \cap (\mathbb{Z}_+^p \times \mathbb{R}_+^{n-p})$.
- An integer program is then described fully by the quadruplet (A, b, c, p).
- Vectors will be column vectors unless otherwise noted.
- When taking the product of vectors, we will sometimes leave off the transpose.
Additional Notation

• The notation A_N will denote a submatrix formed by taking the columns indexed by set $N \subseteq \{1, \ldots, n\}$.

• The i^{th} column of A will be denoted A_i.

• The i^{th} row of A will be denoted a_i.
Linear Algebra Review: Linear Independence

Definition 1. A finite collection of vectors $x^1, \ldots, x^k \in \mathbb{R}^n$ is linearly independent if the unique solution to $\sum_{i=1}^{k} \lambda_i x^i = 0$ is $\lambda_i = 0, i \in [1..k]$. Otherwise, the vectors are linearly dependent.

Let A be a square matrix. Then, the following statements are equivalent:

- The matrix A is invertible.
- The matrix A^\top is invertible.
- The determinant of A is nonzero.
- The rows of A are linearly independent.
- The columns of A are linearly independent.
- For every vector b, the system $Ax = b$ has a unique solution.
- There exists some vector b for which the system $Ax = b$ has a unique solution.
Linear Algebra Review: Affine Independence

Definition 2. A finite collection of vectors $x^1, \ldots, x^k \in \mathbb{R}^n$ is affinely independent if the vectors $x^2 - x^1, \ldots, x^k - x^1 \in \mathbb{R}^n$ are linearly independent.

- Linear independence implies affine independence, but not vice versa.
- The property of linear independence is with respect to a given origin.
- Affine independence is essentially a “coordinate-free” version of linear independence.

Proposition 1. The following statements are equivalent:

1. $x_1, \ldots, x_k \in \mathbb{R}^n$ are affinely independent.
2. $x_2 - x_1, \ldots, x_k - x_1$ are linearly independent.
3. $(x_1, 1), \ldots, (x_k, 1) \in \mathbb{R}^{n+1}$ are linearly independent.
Linear Algebra Review: Subspaces

Definition 3. A nonempty subset $H \subseteq \mathbb{R}^n$ is called a subspace if $\alpha x + \gamma y \in H \ \forall x, y \in H$ and $\forall \alpha, \gamma \in \mathbb{R}$.

Definition 4. A linear combination of a collection of vectors $x^1, \ldots, x^k \in \mathbb{R}^n$ is any vector $y \in \mathbb{R}^n$ such that $y = \sum_{i=1}^{k} \lambda_i x^i$ for some $\lambda \in \mathbb{R}^k$.

Definition 5. The span of a collection of vectors $x^1, \ldots, x^k \in \mathbb{R}^n$ is the set of all linear combinations of those vectors.

Definition 6. Given a subspace $H \subseteq \mathbb{R}^n$, a collection of linearly independent vectors whose span is H is called a basis of H. The number of vectors in the basis is the dimension of the subspace.
Linear Algebra Review: Subspaces and Bases

- A given subspace has an infinite number of bases.
- Each basis has the same number of vectors in it.
- If S and T are subspaces such that $S \subseteq T \subseteq \mathbb{R}^n$, then a basis of S can be extended to a basis of T.
- The span of the columns of a matrix A is a subspace called the column space or the range, denoted $\text{range}(A)$.
- The span of the rows of a matrix A is a subspace called the row space.
- The dimensions of the column space and row space are always equal. We call this number $\text{rank}(A)$.
- Clearly, $\text{rank}(A) \leq \min\{m, n\}$. If $\text{rank}(A) = \min\{m, n\}$, then A is said to have full rank.
- The set $\{x \in \mathbb{R}^n \mid Ax = 0\}$ is called the nullspace of A (denoted $\text{null}(A)$) and has dimension $n - \text{rank}(A)$.
Some Properties of Subspaces

Proposition 2. The following are equivalent:

1. \(H \subseteq \mathbb{R}^n \) is a subspace.
2. There is an \(m \times n \) matrix \(A \) such that \(H = \{ x \in \mathbb{R}^n \mid Ax = 0 \} \).
3. There is a \(k \times n \) matrix \(B \) such that \(H = \{ x \in \mathbb{R}^n \mid x = uB, u \in \mathbb{R}^k \} \).

Proposition 3. If \(\{ x \in \mathbb{R}^n \mid Ax = b \} \neq \emptyset \), the maximum number of affinely independent solutions of \(Ax = b \) is \(n + 1 - \text{rank}(A) \).

Proposition 4. If \(H \subseteq \mathbb{R}^n \) is a subspace, the subspace \(\{ x \in \mathbb{R}^n \mid x^\top y = 0 \forall y \in H \} \) is a subspace called the orthogonal subspace and denoted \(H^\perp \).

Proposition 5. If \(H = \{ x \in \mathbb{R}^n \mid Ax = 0 \} \), with \(A \) being an \(m \times n \) matrix, then \(H^\perp = \{ x \in \mathbb{R}^n \mid x = A^\top u, u \in \mathbb{R}^m \} \).
Affine Spaces

Definition 7. An affine combination of a collection of vectors $x^1, \ldots, x^k \in \mathbb{R}^n$ is any vector $y \in \mathbb{R}^n$ such that $y = \sum_{i=1}^{k} \lambda_i x^i$ for some $\lambda \in \mathbb{R}^k$ with $\sum_{j=1}^{k} \lambda_j = 1$.

Definition 8. A nonempty subset $A \subseteq \mathbb{R}^n$ is called an affine space if A is closed with respect to affine combination.

Definition 9. A basis of an affine space $A \subseteq \mathbb{R}^n$ is maximal set of affinely independent points of A.

Definition 10. The inclusionwise minimal affine space containing a set S is called the affine hull of S, denoted $\text{aff}(S)$.

Definition 11. All bases of an affine space A have the same cardinality and this is the dimension of the affine space.

Projections

Definition 12. If \(p \in \mathbb{R}^n \) and \(H \) is a subspace, the projection of \(p \) onto \(H \) is the vector \(q \in H \) such that \(p - q \in H^\perp \).

- Note that this is a decomposition of a vector \(p \) into the sum of a vector in \(H \) and a vector in \(H^\perp \).
- The projection of a set is the union of the projections of all its members.
- Projections play a very important role in discrete optimization, as we will see later in the course.
Polyhedra, Hyperplanes, and Half-spaces

Definition 13. A polyhedron is a set of the form \(\{x \in \mathbb{R}^n \mid Ax \leq b\} \), where \(A \in \mathbb{R}^{m \times n} \) and \(b \in \mathbb{R}^m \).

Definition 14. A polyhedron \(\mathcal{P} \subset \mathbb{R}^n \) is bounded if there exists a constant \(K \) such that \(|x_i| < K \forall x \in S, \forall i \in [1, n] \).

Definition 15. A bounded polyhedron is called a polytope.

Definition 16. Let \(a \in \mathbb{R}^n \) and \(b \in \mathbb{R} \) be given.

- The set \(\{x \in \mathbb{R}^n \mid a^\top x = b\} \) is called a hyperplane.
- The set \(\{x \in \mathbb{R}^n \mid a^\top x \leq b\} \) is called a half-space.
Convex Sets

Definition 17. A set $S \subseteq \mathbb{R}^n$ is convex if $\forall x, y \in S, \lambda \in [0, 1]$, we have $\lambda x + (1 - \lambda)y \in S$.

Definition 18. Let $x^1, \ldots, x^k \in \mathbb{R}^n$ and $\lambda \in \mathbb{R}^k_+$ be given such that $\lambda^\top \mathbf{1} = 1$. Then

1. The vector $\sum_{i=1}^{k} \lambda_i x^i$ is said to be a convex combination of x^1, \ldots, x^k.

2. The convex hull of x^1, \ldots, x^k is the set of all convex combinations of these vectors.

- The convex hull of two points is a line segment.
- A set is convex if and only if for any two points in the set, the line segment joining those two points lies entirely in the set.
- All polyhedra are convex.